• Title/Summary/Keyword: building structural systems

Search Result 666, Processing Time 0.026 seconds

Life-Cycle Analysis of Nuclear Power Plant with Seismic Isolation System (면진장치 적용을 고려한 원전구조물 생애주기 분석)

  • Kim, Sunyong;Lee, Hong-Pyo;Cho, Myung-Sug
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.415-421
    • /
    • 2013
  • In order to extend the service life of a nuclear power plant(NPP) ensuring the structural safety, effective and efficient management of NPP considering structural deteriorations and various natural hazard risks has been treated as a significant tool(IAEA 1998). The systemic efforts is required to prevent the potential loss of NPPs resulting from the natural hazard including earthquakes, hurricane and flooding since the Fukushima accident. Earthquake risk of building structures can be mitigated through appropriate seismic isolation system installation. It has been known that a seismic isolation system can lead to reduction of the deleterious effect on ground motion induced by earthquakes, and structural safety can be improved. In this paper, the NPP life-cycle management is reviewed. Furthermore, effect of seismic isolation on the NPP life-cycle cost analysis with earthquake, and cost-benefit analysis in terms of life-cycle cost when applying the seismic isolation systems to NPP are introduced.

Development of a Nonlinear SI Scheme using Measured Acceleration Increment (측정 가속도 증분을 사용한 비선형 SI 기법의 개발)

  • Shin, Soo-Bong;Oh, Seong-Ho;Choi, Kwang-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.73-80
    • /
    • 2004
  • A nonlinear time-domain system identification algorithm using measured acceleration data is developed for structural damage assessment. To take account of nonlinear behavior of structural systems, an output error between measured and computed acceleration increments has been defined and a constrained nonlinear optimization problem is solved for optimal structural parameters. The algorithm estimates time-varying properties of stiffness and damping parameters. Nonlinear response of restoring force of a structural system is recovered by using the estimated time-varying structural properties and computed displacement by Newmark-$\beta$ method. In the recovery, no pre-defined model for inelastic behavior has been assumed. In developing the algorithm, noise and incomplete measurement in space and state have been considered. To examine the developed algorithm, numerical simulation and laboratory experimental studies on a three-story shear building have been carried out.

Analysis on Long Term Behavior in 120-Story High-Rise Buildings according to Lateral-Load-Resisting Systems (120층 규모 초고층 건물에 대한 횡력저항시스템 적용에 따른 장기거동 분석)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.119-129
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. The differential axial shortening can cause challenges in the serviceability and safety of non-structural and structural elements, respectively. Hence, in this study, the differential axial shortening of the vertical elements and effects of long term behaviors of concrete are analyzed in 120-story high-rise buildings via the construction sequence analysis. Consequently, the axial shortening of the vertical elements is classified into elastic, creep, and shrinkage shortening, and dominant factors to the maximum axial shortening are analyzed. In addition, the serviceability of the non -structural elements is checked with a differential axial shortening at 30 years after completion of construction, and member forces at design and construction stages in girders and outrigger walls are compared.

Unscented Kalman Filter with Multiple Sigma Points for Robust System Identification of Sudden Structural Damage (다중 분산점 칼만필터를 이용한 급격한 구조손상 탐지 기법 개발)

  • Se-Hyeok Lee;Sang-ri Yi;Jin Ho Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • The unscented Kalman filter (UKF), which is widely used to estimate the states of nonlinear dynamic systems, can be improved to realize robust system identification by using multiple sigma-point sets. When using Kalman filter methods for system identification, artificial noises must be appropriately selected to achieve optimal estimation performance. Additionally, an appropriate scaling factor for the sigma-points must be selected to capture the nonlinearity of the state-space model. This study entailed the use of Bouc-Wen hysteresis model to examine the nonlinear behavior of a single-degree-of-freedom oscillator. On the basis of the effects of the selected artificial noises and scaling factor, a new UKF method using multiple sigma-point sets was devised for improved robustness of the estimation over various signal-to-noise-ratio values. The results demonstrate that the proposed method can accurately track nonlinear system states even when the measurement noise levels are high, while being robust to the selection of artificial noise levels.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

An Empirical Study of the Impact of Knowledge Management Capabilities on Organizational Performance (지식경영능력이 조직성과에 미치는 영향에 관한 실증적 연구)

  • 천면중;허명숙
    • The Journal of Information Systems
    • /
    • v.10 no.2
    • /
    • pp.165-192
    • /
    • 2001
  • Knowledge Management (KM) is the systematic, explicit, and deliberate building, renewal, and application of knowledge to maximize an enterprise's knowledge-related effectiveness and performance from its knowledge assets. KM applies systematic approaches to find, understand, and use knowledge to create new capabilities, solve problems, enable superior performance, and encourage innovation. The purpose of this research is to identify the relationship of KM capabilities (KM infrastructures and KM processes) and organizational effectiveness and performance. An empirical research of the relationship of knowledge management capabilities and organizational effectiveness and performance is conducted from the information systems and knowledge management literature in order to access the following questions: (1) Does the knowledge management infrastructure contribute to the organizational effectiveness and peformance? (2) Does the knowledge management process contribute to the organizational effectiveness and peformance? The research design employs a mail survey questionnaire for gathering data from 500 firms in a number of industries. From a mail survey of 61 top managers of knowledge management, the results of empirical analyses provide the following major findings: (1) While the external effectiveness of organization is influenced by the cultural infrastructure of knowledge management, the overall performance of organization is influenced by the structural infrastructure of knowledge management. (2) While the external effectiveness of organization is influenced by the application and protection processes of knowledge management, the overall performance of organization is influenced by the knowledge acquisition process of knowledge management.

  • PDF

A Critical Analysis on the Architectural Education in Korea from the view of International Accrediting Criteria (국제적(國際的) 건축(建築) 전문교육(專門敎育) 인증기준(認證基準)에서 본 한국(韓國) 건축교육(建築敎育)의 현황분석(現況分析))

  • Ryu, Jeon-Hee;Rieh, Sun-Young
    • Journal of architectural history
    • /
    • v.8 no.3 s.20
    • /
    • pp.75-89
    • /
    • 1999
  • Under the WTO system, global standardization of professionalism in architecture practice calls for transformation of curriculum in architectural education in Korea. This paper compares the curriculum standards of international accrediting authorities such as NAAB and RIBA based on UIA accord which defines fundamental knowledge and abilities of an architect. As a result this paper extracts 51 achievement oriented criteria of architectural education in Korea. It can be categorized as communication, design, cultural context(history and theory, human behavior and social aspects), technical systems(structural systems, environmental control systems, construction material and assemblies) and practice(project process, project economics and business management, laws and regulations). Based on this recommended Korean curriculum standards, current curriculum is analyzed focusing on the 5 architectural programs in Seoul. Through this analysis, it became clear that some area - social and economic aspects in architecture, sustainability in architecture, understanding and selection of construction material, assemblies and environmental control system, recycling of existing building, professional liability, professional rules of conduct, project economics and project management - need to be covered and emphasized to meet the international standards in professional education in architecture. The result in this paper will be used as a basic data in the process of finding the direction of restructuring curriculum for professional architectural education in Korea.

  • PDF

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.

Statistics and probability analysis of vehicle overloads on a rigid frame bridge from long-term monitored strains

  • Li, Yinghua;Tang, Liqun;Liu, Zejia;Liu, Yiping
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.287-301
    • /
    • 2012
  • It is well known that overloaded vehicles may cause severe damages to bridges, and how to estimate and evaluate the status of the overloaded vehicles passing through bridges become a challenging problem. Therefore, based on the monitored strain data from a structural health monitoring system (SHM) installed on a bridge, a method is recommended to identify and analyze the probability of overloaded vehicles. Overloaded vehicle loads can cause abnormity in the monitored strains, though the abnormal strains may be small in a concrete continuous rigid frame bridge. Firstly, the abnormal strains are identified from the abundant strains in time sequence by taking the advantage of wavelet transform in abnormal signal identification; secondly, the abnormal strains induced by heavy vehicles are picked up by the comparison between the identified abnormal strains and the strain threshold gotten by finite element analysis of the normal heavy vehicle; finally, according to the determined abnormal strains induced by overloaded vehicles, the statistics of the overloaded vehicles passing through the bridge are summarized and the whole probability of the overloaded vehicles is analyzed. The research shows the feasibility of using the monitored strains from a long-term SHM to identify the information of overloaded vehicles passing through a bridge, which can help the traffic department to master the heavy truck information and do the damage analysis of bridges further.