• Title/Summary/Keyword: building structural systems

Search Result 666, Processing Time 0.028 seconds

A Study of Improving Method of Seismic-Resisting Capacity of Deteriorated Apartment Houses according to Load Change (하중기준 변화에 따른 노후공동주택의 내진성능 향상 기법에 대한 고찰)

  • 정미영;이수진;박경헌;박지영;김상연;윤영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.821-826
    • /
    • 2001
  • In 2000, Standard Design Loads for Building was changed especially in seismic load. According to the change, seismic-resisting capacity of deteriorated apartment houses has to be reestimated. This research is to propose seismic-strengthening and improving methods of structural efficiency of RC deteriorated apartment houses. The analysis models were shear-wall system(36/58/79$m^{2}$) and beam-column system(11/19/25py) which were constructed in early 1980 and didn't consider seismic load. The definite methods are addition of shear walls and lightening of load. The story-drifts of shear wall systems exceed allowable story-drifts so that two methods was applied. The story-drifts of beam-columns system satisfy allowable story-drifts, thus the latter is applied. The seismic-resisting capacity of these systems was improved by the two methods. This research will be helpful to remodel deteriorated apartment houses.

  • PDF

Seisminc Response of Base Isolated Structures with MR Dampers (MR 감쇠기를 적용한 기초격리구조물의 지진응답)

  • 고봉준;황인호;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.505-512
    • /
    • 2003
  • As large structures such as highrise buildings and cable-stayed bridges become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, the seismic performance of M dampers are studied and compared with that of the NZ system as a base isolation system As the control algorithm of the MR damper, the clipped-optimal control(applied LQR method) is employed. A five-story building is modeled and the seismic performance of the two systems subjected to three different earthquakes is compared. The results show that the M damper system can provide superior protection than the NZ system for a wide range of ground motions.

  • PDF

A Study on the Establishment Feature and the Development of Large Space Buildings in Korea (국내 대공간 건축의 발달과정과 건립특성에 관한 연구)

  • Lee, Ju-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.65-75
    • /
    • 2009
  • For the large space buildings since 1960s in Korea spanned more than 30m, the establishment feature and the development process were examined. As the Results, physical facilities with 40-70m span were mainly established in 1980s-1990s, but large scale convention centers have been establishing after 2000s as the used of large space buildings are varied. Also, a space frame has been generally used in 1980s while the unique structural shapes were builded in the early age(1960s), the structural design with concerns a form and using various structural systems have been attempting after 2000s.

  • PDF

An expert system for making durable concrete for chemical exposure

  • Islam, Md. Nazrul;Zain, Muhammad Fauzi Mohd.;Basri, Hassan
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.293-307
    • /
    • 2005
  • The development and the main features of an expert system for modeling the requirements of durable concrete in chemical exposure, called the Durable Concrete Advisor for Chemical Exposure (DCACE), are described. The system was developed to help improve the quality of concrete exposed to chemical environment by minimizing mistakes and deficiencies in selecting concrete constituents. Using Kappa-PC expert system shell, an object-oriented model was developed where the rule-based reasoning operates on or across objects. The American Concrete Institute manual of concrete practice was chosen as the main source of knowledge. Other textual sources were also consulted for knowledge acquisition. The major objectives of the research were acquisition and formalization of the relevant knowledge and building an expert system for making durable concrete for chemical exposure regarding sulfate attack, acid attack, seawater attack and carbonation. Similar to most expert systems, this system has explanation facilities, can be incrementally expanded, and has an easy to understand knowledge base. The performance of the system is demonstrated by an example session. The system is user-friendly and can be used as an educational tool.

Influence of sharp stiffness variations in damage evaluation using POD and GSM

  • Thiene, M.;Galvanetto, U.;Surace, C.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.569-594
    • /
    • 2014
  • Damage detection methods based on modal analysis have been widely studied in recent years. However the calculation of mode shapes in real structures can be time consuming and often requires dedicated software programmes. In the present paper the combined application of proper orthogonal decomposition and gapped smoothing method to structural damage detection is presented. The first is used to calculate the dynamic shapes of a damaged structural element using only the time response of the system while the second is used to derive a reference baseline to which compare the data coming from the damaged structure. Experimental verification is provided for a beam case while numerical analyses are conducted on plates. The introduction of a stiffener on a plate is investigated and a method to distinguish its influence from that of a defect is presented. Results highlight that the derivatives of the proper orthogonal modes are more effective damage indices than the modes themselves and that they can be used in damage detection when only data from the damaged structure are available. Furthermore the stiffened plate case shows how the simple use of the curvature is not sufficient when analysing complex components. The combined application of the two techniques provides a possible improvement in damage detection of typical aeronautical structures.

Vibration Control of Buildings Connected by a Sky-Bridge (SKY-BRIDGE로 연결된 건물의 진동제어)

  • 류진국;김진구
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.203-213
    • /
    • 2004
  • This study investigates the seismic responses of two structures connected by a sky-bridge equipped with viscoelastic dampers (VED) at the bridge-building connections. The applicability of the method is verified first by observing RMS (root-mean-squared) responses of two-degrees-of-freedom systems subjected to white noise ground excitation. Then model structures with various number of stories are analyzed using earthquake ground motions to observe the effect of the varying size of VED on the reduction of dynamic responses. According to the analysis results, there exists a proper size of VED which minimizes the structural responses. It is also observed that the effectiveness of VED increases as the difference of natural frequencies between the two connected structures increases.

A Study of Passive Magnetic Device based on BIM for the Vibration Conrol of Structures (BIM기반의 구조물 진동제어를 위한 Passive Magnetic Device 개발에 관한 연구)

  • Koo, Sun-Mo;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.42-48
    • /
    • 2016
  • Structural members are designed to maintain the load-carrying capacity as well as structural strength, and the structural serviceability such as the deflection, cracks, and vibration to give the occupants uncomfortable environment should be checked. Recently, the importance of the vibration has been issued since the Techno Mart accident due to vibration resonance. This study provides a passive vibration control system using the repulsion force of magnets to reduce dynamic vibrations. The systems is devised by importing the constraint condition by a hinge to operate magnets installed at two adjacent locations. The effectiveness of the proposed system is investigated by the vibration control test of a steel beam with and without the control system. It is illustrated in the test that the system is activated by the control forces executed by the magnets and can be utilized in reducing the dynamic responses. The system can be applied to pedestrian bridge and traffic bridge. The applicability is expected in the future by optimizing the factors to affect the dynamic responses like the intensity, mass, locations of magnets.

Sensor placement optimization in structural health monitoring using distributed monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Proper placement of sensors plays a key role in construction and implementation of an effective structural health monitoring (SHM) system. This paper proposes a novel methodology called the distributed monkey algorithm (DMA) for the optimum design of SHM system sensor arrays. Different from the existing algorithms, the dual-structure coding method is adopted for the representation of design variables and the single large population is partitioned into subsets and each subpopulation searches the space in different directions separately, leading to quicker convergence and higher searching capability. After the personal areas of all subpopulations have been finished, the initial optimal solutions in every subpopulation are extracted and reordered into a new subpopulation, and the harmony search algorithm (HSA) is incorporated to find the final optimal solution. A computational case of a high-rise building has been implemented to demonstrate the effectiveness of the proposed method. Investigations have clearly suggested that the proposed DMA is simple in concept, few in parameters, easy in implementation, and could generate sensor configurations superior to other conventional algorithms both in terms of generating optimal solutions as well as faster convergence.

Investigation on the masonry vault by experimental and numerical approaches

  • Guner, Yunus;Ozturk, Duygu;Ercan, Emre;Nuhoglu, Ayhan
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Masonry constructions exhibit uncertain behaviors under dynamic effects such as seismic action. Complex issues arise in the idealization of structural systems of buildings having different material types and mechanical properties. In this study, the structural behavior of a vaulted masonry building constructed using full clay brick and lime-based mortar and sitting on consecutive arches was investigated by experimental and numerical approaches. The dimensions of the structure built in the laboratory were 391 × 196 cm, and its height was 234 cm. An incremental repetitive loading was applied to the prototype construction model. Along the gradually increasing loading pattern, the load-displacement curves of the masonry structure were obtained with the assistance of eight linear displacement transducers. In addition, crack formation areas, and relevant causes of its formation were determined. The experimental model was idealized using the finite element method, and numerical analyses were performed for the area considered as linear being under similar loading effect. From the linear analyses, the displacement values and stress distribution of the numerical model were obtained. In addition, the effects of tie members, frequently being used in the supports of curved load-bearing elements, on the structural behavior were examined. Consequently, the experimental and numerical analysis results were comparatively evaluated.

Seismic Fragility Analysis of Buildings With Combined Shear Wall-Damper System (벽체-감쇠 복합시스템을 갖는 건물의 지진취약도 분석)

  • Rajibul Islam;Sudipta Chakraborty;Kong, ByeongJin;Kim, Dookie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Structural vibration induced by earthquake hazards is one of the most significant concerns in structure performance-based design. Structural hazards evoked from seismic events must be properly identified to make buildings resilient enough to withstand extreme earthquake loadings. To investigate the effects of combined earthquake-resistant systems, shear walls and five types of dampers are incorporated in nineteen structural models by altering their arrangements. All the building models were developed as per ACI 318-14 and ASCE 7-16. Seismic fragility curves were developed from the incremental dynamic analyses (IDA) performed by using seven sets of ground motions, and eventually, by following FEMA P695 provisions, the collapse margin ratio (CMR) was computed from the collapse curves. It is evident from the results that the seismic performance of the proposed combined shear wall-damper system is significantly better than the models equipped with shear walls only. The scrutinized dual seismic resisting system is expected to be applied practically to ensure a multi-level shield for tall structures in high seismic risk zones.