• Title/Summary/Keyword: building structural systems

Search Result 666, Processing Time 0.025 seconds

Problems in Seismic Design of High-Rise RC Building Frame Systems (초고층 건물골조 시스템의 내진설계상 문제점)

  • Lee, Han-Seon;Jung, Sung-Wook;Ko, Dong-Woo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.195-202
    • /
    • 2005
  • High-rise residential buildings in these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes, with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio and, deformation compatibility requirements of frames. The comparative study for these issues by appling IBC 2000 and KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on designer's interpretation and application of code requirements.

  • PDF

A Study on the History of Technology in Korean Modern Architecture (한국 현대건축의 기술역사에 관한 연구)

  • Jung, In-Ha;Kim, Jin
    • Journal of architectural history
    • /
    • v.9 no.3 s.24
    • /
    • pp.51-69
    • /
    • 2000
  • This study tries to analyze the development of architectural technologies appeared in several tall buildings and large spatial structures from 1955 to 1999 in Korea. We suppose that these buildings represent the development of technology in Korean modern architecture. By the detailed analysis of these buildings, we can arrive at a conclusion as such; During the years 1955-1999, there existed a great changement in the eighties. We can find this fact very well in the domain of structural system and curtain wall system. In large spatial structures, the structural-system of shell and steel truss dome was replaced by that of space frame, space truss and cable truss with membrane. In tall building, the structural system of rigid frame and shear wall was replaced by tubular system, core and outrigger system. Korean architects introduced the aluminum curtain wall in the sixties, but its low technological level caused many problems in reality. Therefore, precast concrete curtain wall appeared from seventies as the main method for an outer wall in tall building. With the augmentation of height after 1980, PC curtain wall was replaced by the aluminum curtain wall of unit type and structural glass wall system. These systems help to stress the transparency in a tall building.

  • PDF

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

Optimal inspection frequency to mitigate the risk of building system failure

  • Au-Yong, Cheong Peng;Ali, Azlan Shah;Ahmad, Faizah;Chua, Shirley Jin Lin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.347-352
    • /
    • 2017
  • The poor maintenance practice increases the possibility of system failure. Subsequently, the consequences of failure fall on the aspects of output, safety and healthy, environmental integrity, system quality, and customer satisfaction. Conditionbased maintenance is seen as a potential strategy to improve performance. Whereby, the key success factor of this maintenance strategy is identified as the system inspection. This study aims to investigate the association between system breakdown rate and frequency of inspection. A mixed method approach is implemented by distributing questionnaire and interviewing for data collection. Subsequently, descriptive analysis, correlation analysis and regression are adopted to analyse the collected data from 100 respondents and the results are validated with interview data of 10 interviewees. The research result establishes significant relationship between the system breakdown rate and the frequency of inspection. Additionally, the result of regression analysis confirms that the frequency of inspection is the significant predictor of system breakdown rate. Planning of accurate inspection frequency is crucial to secure the system performance. Hence, the research signifies the importance to carry out regular inspection towards the building systems and components. As a recommendation, the maintenance personnel should assess the risk criticality of the building systems. Then, continuously monitor the condition of critical building systems; regularly inspect the condition of non-critical building systems and randomly inspect all of them.

An Analysis on Architectural Characteristics of Domestic Modular Housing and Building Material Standardization Effect through MC Design (국내 모듈러 주택의 특성 및 MC 설계를 통한 건축자재 표준화 효과 분석)

  • Lee, Chang-Jae;Lim, Seok-Ho
    • Journal of the Korean housing association
    • /
    • v.26 no.6
    • /
    • pp.103-113
    • /
    • 2015
  • Modular construction is a process in which a building is produced off-site in module boxes using standard materials. Since the introduction of prefabrication in building construction, Modular Coordination (MC) has become an essential design tool in building design and construction. However, in Korea, the design standardization has not been adequately applied to modular construction. This study intends to analyze the current status of modular construction in Korea and explore the applicability of MC design in the construction industry. The analysis of the current status of MC design within Korean four major modular construction companies indicates that an incremental dimension is not properly used in horizontal planning modules, which results in a problem of increasing construction cost by high material loss rate. But, in vertical planning modules, a incremental dimension of 100 mm (1 M) is found to be used although the structural system varies among manufacturers, which demonstrates the potential for an open system to be well applied in modular construction, despite different structural systems.

A Study on Applying 3D Automatic Displacement Measurement System for Safety Monitoring of Building Demolition Works (건축물 해체공사 안전 모니터링을 위한 3차원 자동변위계측 시스템 활용 방안 연구)

  • Park, Han-Bin;Han, Hye-Rim;Kim, Taehoon;Cho, Kyuman;Cho, Chang-Geun;Kim, Hyeong-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.229-230
    • /
    • 2022
  • According to the national building status, there are a total of 2.89 million buildings that are over 30 years old after completion, and the number is increasing by more than 70,000 to 80,000 buildings every year. As a result, the demand for demolition works is also increasing, and more than 3 to 4 collapse accidents occur steadily every year during demolition work. Major causes of accidents include non-compliance with plans, negligence of on-site supervisors, and failure to secure structural safety. Due to the strengthening of the Severe Disaster Punishment Act, there is growing interest in the demand for secure management of collapse detection during demolition works. Therefore, this study aims to investigate the applicability of real-time safety monitoring systems using a total station capable of 3D automatic displacement measurement in building demolition work for securing structural safety by the load changes during the demolition process.

  • PDF

Optimum study on wind-induced vibration control of high-rise buildings with viscous dampers

  • Zhou, Yun;Wang, DaYang;Deng, XueSong
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.497-512
    • /
    • 2008
  • In this paper, optimum methods of wind-induced vibration control of high-rise buildings are mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method, are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison analysis to validate the feasibility and validity of the optimum methods considered. The results show that the distributions of damping coefficients along structural height for mass proportional damping (MPD) systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of reducing structural wind-induced vibration response and are superior to other damping systems. Standard deviations of structural responses are influenced greatly by different target functions and the influence is increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the influence of higher modes should be considered when strict requirement of wind-induced vibration comfort is needed for some special structures.

Enhancing the Fire Performance of Concrete-Filled Steel Columns through System-Level Analysis

  • Fike, R.S.;Kodur, V.K.R.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • The use of concrete filling offers a practical alternative for achieving the required stability of steel Hollow Structural Section (HSS) columns under fire conditions. However, current methods for evaluating fire resistance of Concrete Filled Hollow Structural Steel (CFHSS) columns are highly conservative as they are based on an elemental approach without due consideration to structural interactions that occur in framed structural systems. To overcome this limitation, a system level fire resistance analysis was carried out by treating CFHSS columns as part of an overall structural frame. In this analysis, an eight story steel-framed building was modeled under a range of standard and performance-based fire scenarios (including multi-story progressive burn-out fires) to evaluate the contribution of various structural members/assemblies to overall fire resistance. One of the primary factors considered was the use of concrete filling in HSS columns as an alternative to standard W-shape columns. Results from the analysis indicate that the use of CFHSS columns, in place of W-shape columns, in a performance-based environment can fully eliminate the need for applied fire protection to columns, while providing the required level of structural fire resistance.

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.

Structural Cost Optimization Techniques for High-rise Buildings Frame Systems Using High-strength Steels (고강도강재를 사용한 건물골조방식 초고층건물의 구조비용 최적화)

  • Seo, Ji-Hyun;Kwon, Bong-Keun;Kim, Sang-Bum;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.53-63
    • /
    • 2009
  • Use of high-strength steel members in building of high-rise buildings and large scale structures is expected to increase the effectiveness of structural design by reducing the weight and cost of structures. So far, high-strength steel members have been used in a very limited way because it is hard to select the proper strengths of steel members in a systematic way with the consideration of the structural cost. In this paper, therefore, a structural optimization technique based on Genetic algorithm is developed for effective use of high-strength steel members in structural design of high-rise buildings with the form of building frame system. The stability and efficiency of the technique is evaluated by using to a 35-story building. As a result, a stable and reliable optimal solution was obtained with a difference of 2.63% between individual and mean optimal structural costs.