• Title/Summary/Keyword: building response

Search Result 1,905, Processing Time 0.03 seconds

Seismic performance of secondary systems housed in isolated and non-isolated building

  • Kumar, Pardeep;Petwal, Sandeep
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.401-413
    • /
    • 2019
  • The concept of base isolation for equipment is well known. Its application in buildings and structures is rather challenging. Introduction of horizontal flexibility at the base helps in proper energy dissipation at the base level thus reducing the seismic demand of the super structure to be considered during design. The present study shows the results of a series of numerical simulation studies on seismic responses of secondary system (SS) housed in non-isolated and base-isolated primary structures (PS) including equipment-structure interactions. For this study the primary structure consists of two similar single bay three-store reinforced cement concrete (RCC) Frame building, one non-isolated with conventional foundation and another base isolated with Lead plug bearings (LPB) constructed at IIT Guwahati, while the secondary system is modeled as a steel frame. Time period of the base isolated building is higher than the fixed building. Due to the presence of isolator, Acceleration response is significantly reduced in both (X and Y) direction of Building. It have been found that when compared to fixed base building, the base isolated building gives better performance in high seismic prone areas.

The dynamic response prediction of the structure by transient vibration using Semi-Empirical Method (준 경험적 방법을 이용한 충격성 진동에 대한 구조물의 동적 응답의 예측)

  • Lee, Hong-Ki;Baek, Jae-Ho;Kim, Kang-Boo;Woun, Young-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1945-1950
    • /
    • 2000
  • When one build a building that posses Precison production process to be sensitive to vibration and SMD to procuce a large dynamic force, how do one predict & answer vibration control problem at building structure design at first stage, That is a question. It has tried to predict dynamic response and establish answering about global or local dynamic problem in building using experimental and analysis method. One of such a try, it be proposed Semi-Empirial Method that reduce error element of input information about dynamic analysis using dynamic experimental study and measurement data in the basis of real-structure. In this paper, the dynamic response problem about RC-structure building that will be set-up SMD produce large transient dynamic force using Semi-Empirical Method.

  • PDF

The Properties of Optimal Passive Tuned Mass Dampers (최적 수동 동조질량감쇠기의 특성)

  • 노필성;강병두;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.165-172
    • /
    • 1996
  • Recently, the response of a high-rise building to external dynamic force created by wind and earthquake has received much attention. This response is dependent on wind intensity, surrounding environment, building size, shape, mass, stiffness and amount of energy dissipation available in the system. The study has been done on these parameters. Attempts have been made to increase the damping in building system and thereby reduce structural response. These attempts have centered on adding an energy-dissipative system(passive tuned mass damper; passive TMD) to the building system and increasing the overall effective damping. In this paper the optimum condition of passive TMD will be derived with respect to random excitation and the properties of the optimum condition will have been studied.

  • PDF

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

Dynamic Stability Analysis of Base-Isolated Low-level Nonlinear Structure Under Earthquake Excitation (지진시 저층건물 면진구조의 비선형 동적 거동)

  • Mun, Byeong-Yeong;Gang, Gyeong-Ju;Gang, Beom-Su;Kim, Gye-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1743-1750
    • /
    • 2001
  • This paper presents an analysis of nonlinear response of the seismically isolated structure against earthquake excitation to evaluate isolation performances of a rubber bearing. In the analysis of the vibration of building, the building is modeled by lumped mass system where the restoring force is considered as linear, bilinear and trilinear. Fundamental equations of motion are derived for the base isolated structure, and hysteretic and nonlinear-elastic characteristics are considered for a numerical calculation. The excitation levels are magnified fur the recorded strong earthquake motions in order to examine dynamic stability of the structure. Seismic responses (of the building are compared fur the each restoring force type. As a result, it is shown that the effect of the motion by the nonlinear response of the building is comparatively not so large from a seismic design standpoint. The responses of the isolated structures reduce sufficiently and controled the motion of the building well in a practical range. By increasing the acceleration of the earthquake, the yielding of the farce was occurred in the concrete and steel frame, which shows the necessity of the exact nonlinear dynamic analysis.

Large-scale Seismic Response Analysis of Super-high-rise Steel Building Considering Soil-structure Interaction using K computer

  • Miyamura, Tomoshi;Akiba, Hiroshi;Hori, Muneo
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In the present study, the preliminary results of a large-scale seismic response analysis of a super-high-rise steel frame considering soil-structure interaction are presented. A seismic response analysis under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake is conducted. Precise meshes of a 31-story super-high-rise steel frame and a soil region, which are constructed completely of hexahedral elements, are generated and combined. The parallel large-scale simulation is performed using K computer, which is one of the fastest supercomputers in the world. The results are visualized using an offline rendering code implemented on K computer, and the feasibility of using a very fine mesh of solid elements is investigated. The computation performance of the analysis code on K computer is also presented.

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Capacity Spectrum Method for Seismic Performance Evaluation of Multi-Story Building Based on the Story Drift (층간변위를 기반으로 한 다층구조물의 내전성능 평가를 위한 역량스펙트럼법의 개발)

  • Kim, Sun-Pil;Kim, Doo-Kie;Kwak, Hyo-Gyoung;Ko, Sung-Huck;Seo, Hyeong-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.205-210
    • /
    • 2007
  • The existing capacity spectrum method (CSM) is based on the displacement based approach for seismic performance and evaluation. Currently, in the domestic and overseas standard concerning seismic design, the CSM to obtain capacity spectrum from capacity curve and demand spectrum from elastic response spectrum is presented. In the multistory building, collapse is affected more by drift than by displacement, but the existing CSM does not work for story drift. Therefore, this paper proposes an improved CSM to estimate story drift of structures through seismic performance and evaluation. It uses the ductility factor in the A-T domain to obtain constant-ductility response spectrum from earthquake response of inelastic system using the drift and capacity curve from capacity analysis of structure.

  • PDF

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Generation of Simulated Earthquakes and Time-history Dynamic Analysis of Containment Building (지진 데이터 생성 및 격납건물 시간이력 해석)

  • 배용귀;이성로
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.608-612
    • /
    • 2003
  • In the seismic response analysis, the artificial earthquake time history is generated to do the exact seismic analysis for the complex structural system like as containment building. In the present study the several simulated earthquakes are generated by use of SIMQKE program and the time history dynamic analysis of containment building is performed. Also, the seismic responses are statistically analyzed. The seismic response uncertainty arisen from the simulation of earthquakes is one of major uncertainties and the statistical description is needed to account for the random nature of earthquake.

  • PDF