• Title/Summary/Keyword: building response

Search Result 1,905, Processing Time 0.023 seconds

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

Design of a Linear Mass Excitation System for Simulating Wind-induced Responses of a Building Structure (풍하중 구현 및 내풍특성 평가를 위한 선형질량 가진시스템 설계)

  • Park, Eun-Churn;Lee, Sang-Hyun;Min, Kyung-Won;Kang, Kyung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.661-668
    • /
    • 2007
  • In this paper, excitation systems using linear mass shaker (LMS) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop function are used such that the error between the wind and actuator induced responses is minimized by preventing the actuator from exciting unexpected modal response and initial transient response. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

  • PDF

Correlation of wind load combinations including torsion on medium-rise buildings

  • Keast, D.C.;Barbagallo, A.;Wood, G.S.
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.423-439
    • /
    • 2012
  • Three common medium- rise building forms were physically tested to study their overall wind induced structural response. Emphasis was placed on the torsional response and its correlation with other peak responses. A higher correlation was found between the peak responses than between the general fluctuating parts of the signals. This suggests a common mechanism causing the peak event, and that this mechanism is potentially different to the mechanism causing the general load fluctuations. The measurements show that about 80% of the peak overall torsion occur simultaneously with the peak overall along wind drag for some generic building shapes. However, the peak torsional response occurs simultaneously with only 30%-40% of the peak overall drag for the rectangular model. These results emphasise the importance of load combinations for building design, which are often neglected in the design of medium sized rigid buildings for which the along-wind drag is dominant. Current design wind loading standards from around the world were evaluated against the results to establish their adequacy for building design incorporating wind-induced torsion effects. Although torsion is frequently neglected, for some structural systems it may become more important.

Evaluation of Response Modification Factor of Steel Special Resisting Frame Building Before and After Retrofitted with Buckling Restrained Brace (비좌굴가새의 보강 전과 후의 철골 특수모멘트저항골조 건물의 R계수 평가)

  • Shin, Jiuk;Lee, Kihak;Jo, Yeong Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor (R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.

Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm (경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.

3D finite element analysis of the whole-building behavior of tall building in fire

  • Fu, Feng
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.329-344
    • /
    • 2016
  • In this paper, a methodology to simulate the whole-building behaviour of the tall building under fire is developed by the author using a 3-D nonlinear finite element method. The mechanical and thermal material nonlinearities of the structural members, such as the structural steel members, concrete slabs and reinforcing bars were included in the model. In order to closely simulate the real condition under the conventional fire incident, in the simulation, the fire temperature was applied on level 9, 10 and 11. Then, a numerical investigation on the whole-building response of the building in fire was made. The temperature distribution of the floor slabs, steel beams and columns were predicted. In addition, the behaviours of the structural members under fire such as beam force, column force and deflections were also investigated.

TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • A steel high-rise building (HRB) with 15 stories was analyzed under the dynamic load of wind or four different earthquakes taking into consideration the effect of soil-structure interaction (SSI) and using tuned mass damper (TMD) devices to resist these types of dynamic loads. The behavior of the steel HRB as a lightweight structure subjected to dynamic loads is critical especially for wind load with effect maximum at the top of the building and reduced until the base of the building, while on the contrary for seismic load with effect maximum at the base and reduced until the top of the building. The TMDs as a successful passive resistance method against the effect of wind or earthquakes is used to mitigate their effects on the steel high-rise building. Lateral displacements, top accelerations and straining actions were computed to judge the effectiveness of the TMDs on the response of the steel HRB subjected to wind or earthquakes.

Seismic Safety Assessment of Containment Building (격납건물의 내진안전성 평가)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • In this study, the seismic safety of containment building is assessed using response surface method. The structural analyses considering random variables such as load, resistance and analysis by ABAQUS are performed to obtain the structural response. The structural response is represented by polynomial of random variables, and the reliability analysis is performed by Level II method. Drucker-Prager failure criterion is applied as limit state function to take bi-axial stress states into account in the concrete. The lifetime probability of failure is evaluated by considering the lifetime of containment building, the annual occurrence rate of earthquake and the conditional probability of failure. Also the sensitivity analysis on the selection of sampling points is performed to obtain the steady results from response surface method.

Control Performance Evaluation of Outrigger Damper System of Eccentrically Loaded High-Rise Building (편심하중을 가한 고층건물의 아웃리거 댐퍼 시스템 제어성능평가)

  • Kim, Su-Jin;Kim, Su-Geun;Kang, Ho-Geun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • The demand for skyscrapers is increasing worldwide. Until now, various lateral resistance structures have been used for lateral displacement control of high-rise buildings. An outrigger damper system has been introduced recently to improve lateral dynamic response control performance further. However, a study of outrigger damper system is yet to be sufficiently investigated. In this study, time history analysis was performed to investigate the control performance of an outrigger damper system of high-rise building under eccentric loading. To do this, an actual scale 3-dimensional tall building model with an outrigger damper system was prepared. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. On the top floor torsional angle response to the earthquake load, was greatly affected by damping value. And the displacement response was affected greatly by the stiffness value and damping value of damper system. In conclusion, it is necessary to select the proper damping and stiffness values of the outrigger damper system.

Effect of poorly-compacted backfill around embedded foundations on building seismic response

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.549-561
    • /
    • 2012
  • Many building foundations are embedded, however it is not easy to compact the backfill around the foundation especially for the deeply embedded ones. The soil condition around the embedded foundation may affect the seismic response of a building due to the weak contact between the soil and the foundation. In this paper, the response accelerations in the short-period range and at the period of 1 second (in the long-period range) for a seismic design spectrum specified in the IBC design code were compared considering perfect and poor backfills to investigate the effect of backfill compaction around the embedded foundation. An in-house finite-element software (P3DASS) which has the capability of horizontal pseudo-3D seismic analysis with linear soil layers was used to perform the seismic analyses of the structure-soil system with an embedded foundation. Seismic analyses were carried out with 7 bedrock earthquake records provided by the Pacific Earthquake Engineering Research Center (PEER), scaling the peak ground accelerations to 0.1 g. The results indicate that the poor backfill is not detrimental to the seismic response of a building, if the foundation is not embedded deeply in the soft soil. However, it is necessary to perform the seismic analysis for the structure-soil system embedded deeply in the soft soil to check the seismic resonance due to the soft soil layer beneath the foundation, and to compact the backfill as well as possible.