• Title/Summary/Keyword: building energy-saving design

Search Result 214, Processing Time 0.025 seconds

Asterisk(*) Array structure based power reduction power distribution board (애스터리스크(*) 배열구조 기반 전력저감 수배전반)

  • Kim, Mi-Suk;Park, Dong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.138-144
    • /
    • 2017
  • With the increase in power consumption due to the surge in the demand for power, it is necessary to improve the quality or design of the power (supply) for the purpose of reducing the energy consumption and so reduce the power loss. The switchboard is a mechanical device that receives electricity from the electricity generation facilities of KEPCO and divides it into the facilities required for each building. Switchboards generally consist of enclosures, switches, power conductors, and control components. This study deals with energized power conductors, which constitute the main element in the switchboard. Through the measurement of the effective ac resistance, it was confirmed that the vertical array structure of the conventional type plate conductor is inefficient. If the effective AC resistance increases significantly, the sectional area of the conductor becomes relatively large due to the skin effect. In this study, we studied the energy and material savings that could be obtained using the asterisk (*) array structure, which minimizes the effective ac resistance by reducing the skin effect. The core technology principle of this study is the energy saving switchgear based on conductor resistance reduction technology utilizing the asterisk array structure. The present invention involves a plate-shaped conductor arrangement structure capable of canceling out the magnetic field generated on each of the plate conductors (rst or abc) of the AC power supply in the power distribution panel by mutual action. The effect of this structure is to reduce the amount of inductive reactance due to the increase in the cross-sectional area and reduction of the effective AC resistance.

A Study on Green Library Construction Status and Awareness (녹색도서관 구축 현황 및 인식조사 연구)

  • Hong, Suji;Noh, Younghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.79-108
    • /
    • 2014
  • The purpose of this study was to research instances of green library construction and recognition in order to increase awareness of green libraries. To this end, we investigated the green library's outline and green building, evaluated cases of G-SEED certified libraries, and surveyed the employees at the 16 different G-SEED certified libraries. Results showed that the employees' knowledge of green libraries and the green certification system was low, whereas their interest and needs regarding the green library concept were very high. Second, the respondents were able to recognize as a whole the factors of green library construction based on the evaluation items for G-SEED and place particular emphasis on 'recyclable resources & recycling bins.' However, only a few recognized 'water reclamation/reuse system establishment' as a green library factor. Third, the respondents largely agreed upon an evaluation of items on the suitability of G-SEED, and their ranked reasons for build a green library were preventing environmental pollution, energy-saving, environment, ecology, and indoor environmental factors. Fourth, a lack of 'awareness about the concept of the green library' was thought to most affect the awareness of difficulties in green library construction, and the respondents agreed with the need for 'library image enhancement' to better manage expectations of the green library.

A numerical Study for Improvement of Indoor Air Quality of Apartment House (공동주택 단지의 실내 공기질 향상을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Hong, Ji-Eun;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-530
    • /
    • 2009
  • This study has been made to execute a research in order to lead the improvement of indoor air quality, examining the indoor ventilation characteristics by using a numerical analysis method. To this end an extensive parametric investigation are made according to various external flow variables such as main wind direction and wind speed by season, building layout design, and location of ventilators, etc. in Daedeok Techno Valley, one of large-scaled apartment in Daejeon. It is observed there was a significant difference of main wind direction between summer and winter. The main wind direction in summer was a south wind, and on the contrary the direction in winter is northnorthwest, which is similar to the average main wind direction for 10 years. One of the important calculation results is that the change of wind direction causes a significant effect on the apartment ventilation by the change of pressure difference around each complex of apartment. In case of favorable area of ventilation, the indoor ventilation rate can meet 0.7 ACH from the standard value only with natural ventilation. On the contrary, in other area the value was much lower than the standard value. If the calculation result applies to the design of layout apartment or placement of ventilators, it will be greatly helpful to the energy saving because it can be parallel with the natural ventilation to help securing ventilation rate, not much depending on the mechanical ventilation.

A Study on the Evaluation of Thermal Transmittance Performance of Aluminum Alloy Window Frame of Educational Facility considering 2 Dimensional Steady-state Heat Transfer (2차원 정상상태 전열해석을 통한 교육시설의 알루미늄 창호 열관류율 평가에 관한 연구)

  • Park, Tong-So
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5284-5289
    • /
    • 2011
  • This study focused to evaluate thermal transmittance(U-value) performance of sliding type of aluminum alloy window frame(AAWF) with double glazing(DG) and glazing spacer and that without thermal breaker in winter and summer season by two dimensional steady state heat transfer analysis. The AAWE was installed to an existing educational facilities in Seosan area which is the southern region of the Korean Peninsula. Analysis of 2D steady-state heat transfer was performed through the use of BISCO as calculation and simulation program. U-value and temperature factors were calculated. The results are as followed. First, the isotherm simulation shows that AAWF with double glazing have serious differences from recently proposed window thermal performance standards such as Insulation Performance of Windows and Doors of Building Energy Saving Design Standards and the results of calculation of thermal transmittance performance of AAWF and DG are U=9.631 W/$m^2K$, U=2.382 W/$m^2K$ respectively during winter and summer season. Second, the results of analysis of heat transfer analysis, calculated by simulation, shows that 225% of heat is lost comparing with thermal performance standards U=4.0 W/$m^2K$ of general double glazing among those standards on AAWF without thermal breaker.