• Title/Summary/Keyword: buffeting load

Search Result 10, Processing Time 0.016 seconds

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

Aerostatic load on the deck of cable-stayed bridge in erection stage under skew wind

  • Li, Shaopeng;Li, Mingshui;Zeng, Jiadong;Liao, Haili
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.43-63
    • /
    • 2016
  • In conventional buffeting theory, it is assumed that the aerostatic coefficients along a bridge deck follow the strip assumption. The validity of this assumption is suspect for a cable-stayed bridge in the construction stages, due to the effect of significant aerodynamic interference from the pylon. This situation may be aggravated in skew winds. Therefore, the most adverse buffeting usually occurs when the wind is not normal to bridge axis, which indicates the invalidity of the traditional "cosine rule". In order to refine the studies of static wind load on the deck of cable-stayed bridge under skew wind during its most adverse construction stage, a full bridge 'aero-stiff' model technique was used to identify the aerostatic loads on each deck segment, in smooth oncoming flow, with various yaw angles. The results show that the shelter effect of the pylon may not be ignored, and can amplify the aerostatic loading on the bridge deck under skew winds ($10^{\circ}-30^{\circ}$) with certain wind attack angles, and consequently results in the "cosine rule" becoming invalid for the buffeting estimation of cable-stayed bridge during erection for these wind directions.

Structural Safety Analysis of a Long Span Cable-stayed Bridge with a Partially Earth Anchored Cable System on Dynamic Loads during Construction (일부타정식 케이블 시스템 장경간 사장교의 시공 중 동적 안전성 분석)

  • Won, Jeong-Hun;Kim, Gyeoung Yun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • The effect of a partially earth anchored cable system on the structural safety of a long span cable-stayed bridge under seismic and wind loads are examined during construction process. By assuming the FCM (free cantilever method) construction stages with structural vulnerability, a multi-mode spectral analysis and a multi-mode buffeting analysis are performed for specific seismic load and wind load, respectively. Results show that the wind load dominates the structural safety of a cable-stayed bridge during construction. And, the application of a partially earth anchored cable system can enhance structural safety under wind load since the maximum pylon moment in the model with partially earth anchored cable system is reduced by 49% under wind load. In contrast, the maximum pylon moment occurred by seismic load is only decreased by 8%.

Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers

  • Zhang, Nan;Ge, Guanghui;Xia, He;Li, Xiaozhen
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.311-329
    • /
    • 2015
  • A method for analyzing the coupled wind-vehicle-bridge system is proposed that also considers the shielding effect of the bridge tower with triangular wind barriers. The static wind load and the buffeting wind load for both the bridge and the vehicle are included. The shielding effects of the bridge tower and the triangular wind barriers are incorporated by taking the surface integral of the wind load. The inter-history iteration is adopted to solve the vehicle-bridge dynamic equations with time-varying external loads. The results show that after installing the triangular wind barriers in the area of the bridge tower, the bridge response and the vehicle safety factors change slightly. The peak value of the train car body acceleration is significantly reduced when the wind barrier size is increased.

Effects of partially earth-anchored cable system on dynamic wind response of cable-stayed bridges

  • Won, Jeong-Hun;Yoon, Ji-Hyun;Park, Se-Jun;Kim, Sang-Hyo
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.441-453
    • /
    • 2008
  • In this study, a partially earth-anchored cable system is studied in order to reduce the dynamic wind response of cable-stayed bridges. The employment of earth-anchored cables changes the dynamic characteristics of cable-stayed bridges under wind loads. In order to estimate the changes in the member forces, the spectral analysis for wind buffeting loads are performed and the peak responses are evaluated using 3-D finite element models of the three-span cable-stayed bridges with the partially earth-anchored cable system and with the self-anchored cable system, respectively. Comparing the results for the two different models, it is found that the earth-anchored cables affect longitudinal and vertical modes of the bridge. The changes of the natural frequencies for the longitudinal modes remarkably decrease the peak bending moment in the pylon and the movements at the expansion joints. The small changes of the natural frequencies for the vertical modes slightly increase bending moments and deflections in the girder. The original effects of the partially earth-anchored cable system are also shown under wind loads; the decrement of girder axial forces and bearing uplifting forces, and the increment of cable forces in the earth-anchored cables.

Effects of Partially Earth Anchored Cable System on Safety Improvement for a Long-span Cable-stayed Bridge under Seismic and Wind Load (장경간 사장교에 적용된 일부타정식 케이블 시스템의 지진하중과 풍하중 안전성 향상 효과 분석)

  • Won, Jeong-Hun;Lee, Hyung Do
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.97-103
    • /
    • 2016
  • This study investigates effects of partially earth anchored cable system on the structural safety for a long-span cable-stayed bridge under dynamic loads such as seismic and wind load. For a three span cable-stayed bridge with a main span length of 810 m, two models are analyzed and compared; one is a bridge model with a self anchored cable system, the other is a bridge model with a partially earth anchored cable system. By performing multi-mode spectrum analysis for a prescribed seismic load and multi-mode buffeting analysis for a fluctuating wind component, the structural response of two models are compared. From results, the partially earth anchored cable system reduce the maximum pylon moment by 66% since earth anchored cables affect the natural frequencies of girder vertical modes and pylon longitudinal modes. In addition, the girder axial forces are decreased, specially the decrement of the axial force is large in seismic load, while girder moment is slightly increased. Thus, the partially earth anchored cable system is effective system not only on reduction of girder axial forces but also improvement of structural safety of a cable-stayed bridge under dynamic loads such as seismic and wind loads.

Analysis of local vibrations in the stay cables of an existing cable-stayed bridge under wind gusts

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.513-534
    • /
    • 2008
  • This paper examines local vibrations in the stay cables of a cable-stayed bridge subjected to wind gusts. The wind loads, including the self-excited load and the buffeting load, are converted into time-domain values using the rational function approximation and the multidimensional autoregressive process, respectively. The global motion of the girder, which is generated by the wind gusts, is analyzed using the modal analysis method. The local vibration of stay cables is calculated using a model in which an inclined cable is subjected to time-varying displacement at one support under global vibration. This model can consider both forced vibration and parametric vibration. The response characteristics of the local vibrations in the stay cables under wind gusts are described using an existing cable-stayed bridge. The results of the numerical analysis show a significant difference between the combined parametric and forced vibrations and the forced vibration.

Identification of acrosswind load effects on tall slender structures

  • Jae-Seung Hwang;Dae-Kun Kwon;Jungtae Noh;Ahsan Kareem
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.221-236
    • /
    • 2023
  • The lateral component of turbulence and the vortices shed in the wake of a structure result in introducing dynamic wind load in the acrosswind direction and the resulting level of motion is typically larger than the corresponding alongwind motion for a dynamically sensitive structure. The underlying source mechanisms of the acrosswind load may be classified into motion-induced, buffeting, and Strouhal components. This study proposes a frequency domain framework to decompose the overall load into these components based on output-only measurements from wind tunnel experiments or full-scale measurements. First, the total acrosswind load is identified based on measured acceleration response by solving the inverse problem using the Kalman filter technique. The decomposition of the combined load is then performed by modeling each load component in terms of a Bayesian filtering scheme. More specifically, the decomposition and the estimation of the model parameters are accomplished using the unscented Kalman filter in the frequency domain. An aeroelastic wind tunnel experiment involving a tall circular cylinder was carried out for the validation of the proposed framework. The contribution of each load component to the acrosswind response is assessed by re-analyzing the system with the decomposed components. Through comparison of the measured and the re-analyzed response, it is demonstrated that the proposed framework effectively decomposes the total acrosswind load into components and sheds light on the overall underlying mechanism of the acrosswind load and attendant structural response. The delineation of these load components and their subsequent modeling and control may become increasingly important as tall slender buildings of the prismatic cross-section that are highly sensitive to the acrosswind load effects are increasingly being built in major metropolises.

Static Load Test of Composite Sandwich Truncated Cone Structure (복합재료 샌드위치 원뿔대 구조물 정적시험)

  • Park Jae-sung;Jang Young-soon;Yi Yeong-moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.56-60
    • /
    • 2004
  • 2단 또는 3단형으로 설계되고 있는 KSLV-I 발사체의 단연결부는 직경의 변화에 따라 원뿔대(Truncated cone) 구조물이 필요하다. 원뿔대형 구조물이 발사체의 외피일 경우에는 일반적인 실린더형 동체와는 다르게 공력에 의한 버페팅(buffeting)과 공력가열 등이 추가적인 설계인자로 고려되어야 한다. 복합재료 샌드위치 구조물은 외피의 굽힘 강성이 크고, 일체성형으로 실린더형 혹은 원뿔대형 구좁물을 쉽게 제작할 수 있어 단연결부에 적용되고 있다. 또한 위성어댑터(Payload Adapter)등에도 사용되어 우주발사체에는 매우 일반적인 구조물이다. 복합재료 샌드위치 구조물의 제작과 정적시험을 통하여 구조 특성을 알아보았다. 일체형 샌드위치 구조물의 효율을 높이기 위해서는 프레임과의 체결부를 효율적으로 설계하여야 하며 하중의 종류에 따라서 면재의 적층각도가 중요함을 알 수 있었다.

  • PDF

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.