• Title/Summary/Keyword: buffer arriving sequence

Search Result 2, Processing Time 0.016 seconds

The Cell Resequencing Buffer for the Cell Sequence Integrity Guarantee for the Cyclic Banyan Network (사이클릭 벤얀 망의 셀 순서 무결성 보장을 위한 셀 재배열 버퍼)

  • 박재현
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.9
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, we present the cell resequencing buffer to solve the cell sequence integrity problem of the Cyclic banyan network that is a high-performance fault-tolerant cell switch. By offering multiple paths between input ports and output ports, using the deflection self-routing, the Cyclic banyan switch offer high reliability, and it also solves congestion problem for the internal links of the switch. By the way, these multiple paths can be different lengths for each other. Therefore, the cells departing from an identical source port and arriving at an identical destination port can reach to the output port as the order that is different from the order arriving at input port. The proposed cell resequencing buffer is a hardware sliding window mechanism. to solve such cell sequence integrity problem. To calculate the size of sliding window that cause the prime cost of the presented device, we analyzed the distribution of the cell delay through the simulation analyses under traffic load that have a nonuniform address distribution that express tile Property of traffic of the Internet. Through these analyses, we found out that we can make a cell resequencing buffer by which the cell sequence integrity is to be secured, by using a, few of ordinary memory and control logic. The cell resequencing buffer presented in this paper can be used for other multiple paths switching networks.

Sequential Longest Section Color Winning Algorithm for Car Paint Sequencing Problem (자동차 페인트 순서 문제의 연속된 최장 구간 색 승리 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.177-186
    • /
    • 2020
  • This paper deals with the car paint sequencing problem (CPSP) that the entrance sequence is to same colored group with maximum sequenced cars for the buffer arriving cars from the body shop. This problem classified by NP-complete problem because of the exact solution has not obtained within polynomial time. CPSP is aim to minimum pugging number that each pugging must be performs at color changing time in order to entirely cleaning the remaining previous color. To be obtain the minimum number of moving distance with window concept and minimum number of pugging, this paper sorts same color and arriving sequence. Then we basically decide the maximum length section color time to winner team using stage race method. For the case of the loser team with no more racing or yield to loser team and more longer stage in upcoming racing, the winner team give way to loser team. As a result, all cars(runners) are winner in any stage without fail. For n cars, the proposed algorithm has a advantage of simple and fast with O(nlogn) polynomial time complexity, this algorithm can be get the minimum number of moving distance and purging for all of experimental data.