• Title/Summary/Keyword: buckling safety

Search Result 245, Processing Time 0.025 seconds

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

The Optimum Design of Magnet Over Head Crane and the Sensitivity Analysis for Orthogonal Array (마그네트 천장크레인의 최적설계와 직교배열을 이용한 민감도 분석)

  • 노영희;홍도관;최석창;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.786-790
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. The objective function and restricted function were estimated by the orthogonal array, and the sensitivity analysis of design variable fur that was operated.

  • PDF

Reliability Analysis of GFRP Laminated Composite Cylinderical Shells (GFRP 적층복합재료관의 신뢰성해석)

  • 조효남;신재철;이승재;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.85-88
    • /
    • 1992
  • In general, the strength and stiffness of laminated composite cylinderical shells are very sensitive to the variation of slenderness parameters, some coupling-stiffness parameters, lamination angles, stacking sequence and number of layers. In the paper, the effects of these factors on the strength and buckling reliabilities of GFRP laminated cyclinderical shells are investigated based on the proposed strength and buckling limit state models. It may be concluded that the applicable ranges of the slenderness limits of the strength and buckling failure criteria for laminated composite cylinderical shells should be indentified and incorporated into the design formula with appropriate safety factors which provide uniform consistent reliability for balanced design in practice.

  • PDF

A Study on Structural Design and Test of 500W Class Micro Scale Composite Wind Turbine Blade (초소형 풍력터빈 복합재 블레이드 구조 설계에 관한 연구)

  • Gong, Chang-Deok;Kim, Ju-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.190-193
    • /
    • 2005
  • The purpose of the present study is to design a 500W-class micro scale composite wind turbine blade. The blade airfoil of FFA-W3-211 was selected to meet Korean weather condition. The skin-spar-f Dam sandwich type structure was adopted for improving buckling and vibration damping characteristics. The design loads were determined at wind speed of 25m/s. and the structural analysis was performed to confirm safety and stability from strength. buckling and natural frequency using the finite element code. NISA II [6]. The prototype was manufactured using the hand-lay up method and it was experimently tested using the sand bag loading method. In order to evaluate the design results. it was compared with experimental results. According to comparison results. the estimated results such as compressible stress. max tip deflection natural frequency and buckling load factor were well agreed with the experimental results.

  • PDF

A Study on the Strength Characteristics of Vinyl House Pipe Filled with Mortar (모르타르 충진 비닐하우스 파이프의 강도특성에 관한 연구)

  • Paik, Shinwon;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.13-17
    • /
    • 2015
  • There are many vinyl houses in rural areas. These vinyl houses have occasionally been collapsed due to heavy snow load in winter. If these vinyl houses are collapsed, many farmers get a lot of economical damages. So it is very important to built safe vinyl house that is able to withstand the applied heavy snow load. In this study, compressive buckling and flexural tests were performed to investigate the strength increase of circular mortar filled pipes. The results showed that buckling load and flexural moment of mortar filled pipes were increased 42 % ~ 82 %, 40 % ~ 44 % respectively more than only pipe without mortar. It is recommended that mortar filled pipes as main members of vinyl house have to be used to prevent collapsing due to the severe snow load.

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

Optimum Design of Magnet Over Head Crane Girder (마그네트 천장크레인 거더의 치적설계)

  • 노영희;홍도관;최석창;안찬우;한근조
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.241-247
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15 % with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization.

  • PDF

Influence of Geometric Initial Imperfection on the First Buckling Time Variation of Cylinder Under Impact Load (충격하중을 받는 원통의 최초좌굴시간의 변동성에 대한 기하학적 초기결함의 영향)

  • 김두기
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.173-183
    • /
    • 1997
  • In this paper a method is suggested for the probabilistic analysis of impact buckling failure time of cylinder with random axisymmetric geometric imperfection under axial impact. Failure is assumed as axisymmetric radial deformation exceeds the given criteria for the first time. For the generation of random geometric initial imperfection, random field theory by mean function and autocorrelation function of geometric imperfection is used. Suggested method is useful for the treatment of the randomness of realistic geometric imperfection and can be used for the structural safety analysis of cylinder considering its effect.

  • PDF

Optimal Design for Weight Reduction of Magnet Over Head Crane by using Taguchi method (다구찌법을 이용한 마그네트 천장크레인의 경량화를 위한 최적설계)

  • 홍도관;최석창;안찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.50-57
    • /
    • 2003
  • In this study, the structural optimal design was applied to the girder of over head crane. The optimization was carried out using ANSYS code fur the deadweight of girder, especially focused on the thickness of its upper, lower, reinforced and side plates. The weight could be reduced up to around 15% with constraints of its deformation, stress and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures fur the weight save through the structural optimization. The objective function and restricted function were estimated by the orthogonal array, and the sensitivity analysis of design variable fur that was operated.

Development of Design Formula for Predicting Post-Buckling Behaviour and Ultimate Strength of Cylindrical Shell

  • Lee, Jung-Ho;Oh, Young-Cheol;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • Cylindrical shells are often used in ship structures at deck plating with a camber, side shell plating at fore and aft parts, and bilge structure part. It has been believed that such curved shells can be modelled fundamentally by a part of a cylinder under axial compression. From the estimations with the usage of cylinder models, it is known that, in general, curvature increases the buckling strength of a curved shell subjected to axial compression, and that curvature is also expected to increase the ultimate strength. We conduct series of elasto-plastic large deflection analyses in order to clarify the fundamentals in buckling and plastic collapse behaviour of cylindrical shells under axial compression. From the numerical results, we derive design formula for predicting the ultimate strength of cylindrical shell, based on a series of the nonlinear finite element calculations for all edges, simply supporting plating, varying the slenderness ratio, curvature and aspect ratio, as well as the following design formulae for predicting the ultimate strength of cylindrical shell. From a number of analysis results, fitting curve can be developed to use parameter of slenderness ratio with implementation of the method of least squares. The accuracy of design formulae for evaluating ultimate strength has been confirmed by comparing the calculated results with the FE-analysis results and it has a good agreement to predict their ultimate strength.