• Title/Summary/Keyword: buckling safety

Search Result 245, Processing Time 0.021 seconds

Elastic local buckling of thin-walled elliptical tubes containing elastic infill material

  • Bradford, M.A.;Roufegarinejad, A.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.143-156
    • /
    • 2008
  • Elliptical tubes may buckle in an elastic local buckling failure mode under uniform compression. Previous analyses of the local buckling of these members have assumed that the cross-section is hollow, but it is well-known that the local buckling capacity of thin-walled closed sections may be increased by filling them with a rigid medium such as concrete. In many applications, the medium many not necessarily be rigid, and the infill can be considered to be an elastic material which interacts with the buckling of the elliptical tube that surrounds it. This paper uses an energy-based technique to model the buckling of a thin-walled elliptical tube containing an elastic infill, which elucidates the physics of the buckling phenomenon from an engineering mechanics basis, in deference to a less generic finite element approach to the buckling problem. It makes use of the observation that the local buckling in an elliptical tube is localised with respect to the contour of the ellipse in its cross-section, with the localisation being at the region of lowest curvature. The formulation in the paper is algebraic and it leads to solutions that can be determined by implementing simple numerical solution techniques. A further extension of this formulation to a stiffness approach with multiple degrees of buckling freedom is described, and it is shown that using the simple one degree of freedom representation is sufficiently accurate for determining the elastic local buckling coefficient.

A Study on the Buckling Characteristics of Steel Pipe Scaffold (강관비계의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.

Buckling of simply supported thin plate with variable thickness under bi-axial compression using perturbation technique

  • Fan, Haigui;Chen, Zhiping;Wang, Zewu;Liu, Peiqi
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.525-534
    • /
    • 2019
  • An analytical research on buckling of simply supported thin plate with variable thickness under bi-axial compression is presented in this paper. Combining the perturbation technique, Fourier series expansion and Galerkin methods, the linear governing differential equation of the plate with arbitrary thickness variation under bi-axial compression is solved and the analytical expression of the critical buckling load is obtained. Based on that, numerical analysis is carried out for the plates with different thickness variation forms and aspect ratios under different bi-axial compressions. Four different thickness variation forms including linear, parabolic, stepped and trigonometric have been considered in this paper. The calculated critical buckling loads and buckling modes are presented and compared with the published results in the tables and figures. It shows that the analytical expressions derived by the theoretical method in this paper can be effectively used for buckling analysis of simply supported thin plates with arbitrary thickness variation, especially for the stepped thickness that used in engineering widely.

Effect of Horizontal Connection and Slope on Buckling Characteristics of Single Pipe (단관 파이프의 좌굴특성에 대한 수평연결재 및 기울기의 영향)

  • Lee, Jin Seop;Lee, Yeon Su;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.48-55
    • /
    • 2015
  • The number of collapse accidents relevant to form support since 2003 is 30 on the basis of statistical data from Ministry of Employment and Labor,. Total number of casualty was 138 (47 for deaths and 91 for injuries). The accident severity rate was high because the 4.6 casualties per one accident were occurred averagely although the incident rate was relatively low. Especially, one of form support members, the pipe supports have not been equipped adequately so that the accidents could have happened. In this regard, this study performed buckling test related to the effect of horizontal connection and slope in the single pipe which is one of typical pipe supports. The buckling load, which was estimated from the single pipe with the horizontal connectors theoretically and experimentally, was increased as more than 2 times compared to the buckling load obtained from the pipe supports without the connector. The buckling load was reduced as more than 26%, 34% slope of the single pipe comparing with 5% and 10% slope, respectively. Thus, the purpose of this study is to provide the guideline for installation and the maintenance of the pipe supports legally and institutionally to prevent the collapse accidents of the pipe supports.

Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression

  • Shi, G.;Liu, Z.;Ban, H.Y.;Zhang, Y.;Shi, Y.J.;Wang, Y.Q.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.31-51
    • /
    • 2012
  • Local buckling can be ignored for hot-rolled ordinary strength steel equal angle compression members, because the width-to-thickness ratios of the leg don't exceed the limit value. With the development of steel structures, Q420 high strength steel angles with the nominal yield strength of 420 MPa have begun to be widely used in China. Because of the high strength, the limit value of the width-to-thickness ratio becomes smaller than that of ordinary steel strength, which causes that the width-to-thickness ratios of some hot-rolled steel angle sections exceed the limit value. Consequently, local buckling must be considered for 420 MPa steel equal angles under axial compression. The existing research on the local buckling of high strength steel members under axial compression is briefly summarized, and it shows that there is lack of study on the local buckling of high strength steel equal angles under axial compression. Aiming at the local buckling of high strength steel angles, this paper conducts an axial compression experiment of 420MPa high strength steel equal angles, including 15 stub columns. The test results are compared with the corresponding design methods in ANSI/AISC 360-05 and Eurocode 3. Then a finite element model is developed to analyze the local buckling behavior of high strength steel equal angles under axial compression, and validated by the test results. Following the validation, a finite element parametric study is conducted to study the influences of a range of parameters, and the analysis results are compared with the design strengths by ANSI/AISC 360-05 and Eurocode 3.

A Study on the Buckling Characteristics of Pipe Support(V6) (파이프서포트(V6)의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.59-62
    • /
    • 2011
  • Among the accidents and failures that occur during concrete construction, many are formwork failures which usually happen when concrete is being placed. A system of formwork filled with wet concrete has its weight at the top and is not basically a stable structure. Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable shores. In construction site, pipe supports are usually used as a shore of slab formwork. In this study, pipe support systems with/without horizontal connector were measured by buckling test. Buckling load of respective pipe support system was analyzed by structural analysis program(MIDAS). Buckling load of pipe support with/without horizontal connector was got by test and structural analysis. According to these results, we know that horizontal connector made pipe support system very safe. Buckling load of pipe support with horizontal connector is 56% higher than that without horizontal connector. So horizontal connector is important in slab formwork systems. Finally, the present study results will be used to design slab formwork system safely in the construction sites.

Effect of Boundary Condition on Buckling Characteristics of Pipe Supports (파이프 서포트의 좌굴특성에 대한 지지조건의 영향)

  • Lee, Jin Seop;Lee, Yeon Su;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.41-47
    • /
    • 2015
  • Recently, a lot more disasters in the temporary structures happen because the stabilities of the temporary structures are disregarded by the reduction of the unit cost, using defective materials, the existing materials and so on. Pipe supports, which are one of the temporary structures, are basically used for the most constructing works such as buildings, bridges, plants and so on. In the most sites, adequate support installations of the pipe supports have not been performed although the presence of the guideline legally and institutionally. In this study, therefore, the collapse accidents of the pipe supports were investigated on the basis of theoretical analysis as well as the buckling tests by simulating the site support condition. Both the theocratical analysis and test results show that the buckling load in the fixed ends is at least 4 times larger than one in the pinned ends. This results will be utilized for safety assurance as well as accident prevention the in the field application.

Structural Design of CN fan Lift of 5 tonne Fans for Air Conditioner (5톤 송풍기용 FAN 인양기 구조설계)

  • Lee, Hyoungwook;Lee, Gwanghee
    • Journal of Institute of Convergence Technology
    • /
    • v.9 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • Normal cranes cannot be used to move the fan inside the high-rise factories. Due to the size of the fan and safety accidents, there is a need for a structure capable of lifting and transporting. In this study, the safety of the structure was evaluated by considering the center of gravity of the fan and the effect of the fan being tilted up. An analysis of the buckling was performed by hand calculation. Nonlinear analysis was performed using ABAQUS to evaluate the safety of the structure. The safety factor for buckling is above 4.0 and the safety factor for stress is calculated to be 1.31 under the worst load distribution conditions.

A Proposed method of the Strength Calculation of Pipe Support (파이프 서포트의 내력 산정 방안)

  • 이영욱;최순주
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • Even though there is a guideline for the required strength of pipe support in inspection, it does not mean the nominal strength which can be used for the form work design. And, Concrete Specification defines that the pipe support should be designed according to the steel design guidelines but the design details are not provided, such as buckling length and the sectional modulus, etc. For the better prediction of strength of pipe support, the slenderness ratio of support which reflects the boundary condition should be considered. In this paper, the elastic buckling formula based on the slenderness is derived. The formula contains the strength reduction factor that consider the strength deduction caused by initial lateral deformation and is 0.65 consistently regardless of boundary conditions. And the coefficient of effective buckling length is calculated from the experiment.

  • PDF

Impact Buckling Reliability Analysis of Stiffened Cylinder With Initial Geometric Imperfection (기하학적 초기형상결함을 갖는 보강 원통의 충격좌굴 신뢰성 해석)

  • 김두기
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.735-747
    • /
    • 1996
  • In this paper, buckling reliability analyses of stiffened cylinder with random initial geometric imperfection under axial impact load are performed by the combined response surface method. The effect of random geometric imperfection on the failure probability and reliability is recognized quantitatively. Buckling reliability decreases with the increase of mean value, cov of initial geometric imperfection under the same external load. Buckling probability under impact load is greater than those under static load with the same condition. From the probabilistic characteristics of imapct buckling load, relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. And those results can be used to determine the range of required safety parameter and acceptable imperfaction.

  • PDF