• 제목/요약/키워드: buckling loads

검색결과 648건 처리시간 0.021초

Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads

  • Rajanna, T.;Banerjee, Sauvik;Desai, Yogesh M.;Prabhakara, D.L.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.37-55
    • /
    • 2016
  • In this study, the influence of centrally placed circular and square cutouts on vibration and buckling characteristics of different ply-oriented laminated panels under the action of compressive and/or tensile types of non-uniform in-plane edge loads are investigated. The panels are inspected under the action of uniaxial compression, uniaxial tension and biaxial, compression-tension, loading configurations. Furthermore, the effects of different degrees of edge restraints and panel aspect ratios are also addressed in this work. Towards this, a nine-node heterosis plate element has been adopted which includes the effect of shear deformation and rotary inertia. According to the results, the tensile buckling loads are higher than that of compressive buckling loads. However, the tensile buckling load continuously reduces with the increased cutout sizes irrespective of ply-orientations. This is also true for compressive buckling loads except for some particular ply-orientations with higher sized cutouts.

Buckling optimization of unsymmetrically laminated plates under transverse loads

  • Hu, Hsuan-Teh;Chen, Zhong-Zhi
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.19-33
    • /
    • 1999
  • The critical buckling loads of unsymmetrically laminated rectangular plates with a given material system and subjected to combined lateral and inplane loads are maximized with respect to fiber orientations by using a sequential linear programming method together with a simple move-limit strategy. Significant influence of plate aspect ratios, central circular cutouts, lateral loads and end conditions on the optimal fiber orientations and the associated optimal buckling loads of unsymmetrically laminated plates has been shown through this investigation.

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

A method for analyzing the buckling strength of truss structures

  • Pan, Yi;Gu, Renqi;Zhang, Ming;Parke, Gerry;Behnejad, Alireza
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.129-139
    • /
    • 2019
  • This paper develops a new method for estimating the elastic-plastic buckling strength of the truss structures under the static and seismic loads. Firstly, a new method for estimating the buckling strength of the truss structures was derived based on the buckling strength of the representative member considering the parameters, such as the structure configurations, boundary conditions, etc. Secondly, the new method was verified through the buckling strength estimation and the finite element method (FEM) analysis of the single member models, portal frame models and simple truss models. Finally, the method was applied to evaluate the buckling strength of a simple truss structure under seismic load, and the failure loads between the proposed method and the FEM were analyzed reasonably. The results show that the new method is feasible and reliable for structure engineers to estimate the buckling strengths of the truss structures under the static loads and seismic loads.

Probabilistic analysis of buckling loads of structures via extended Koiter law

  • Ikeda, Kiyohiro;Ohsaki, Makoto;Sudo, Kentaro;Kitada, Toshiyuki
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.167-178
    • /
    • 2009
  • Initial imperfections, such as initial deflection or remaining stress, cause deterioration of buckling strength of structures. The Koiter imperfection sensitivity law has been extended to describe the mechanism of reduction for structures. The extension is twofold: (1) a number of imperfections are considered, and (2) the second order (minor) imperfections are implemented, in addition to the first order (major) imperfections considered in the Koiter law. Yet, in reality, the variation of external loads is dominant over that of imperfection. In this research, probabilistic evaluation of buckling loads against external loads subjected to probabilistic variation is conducted by extending the concept of imperfection sensitivity. A truss arch subjected to dead and live loads is considered as a numerical example. The mechanism of probabilistic variation of buckling strength of this arch is described by the proposed method, and its reliability is evaluated.

비대칭 연결재를 갖는 조립식 압축부재의 좌굴 거동에 관한 실험 연구 I - 연결재 간격의 영향 - (An Experimental study of Buckling Behavior in Built-up Compression Member with Unsymmetric Connectors I - Effect of Distance of Connecting Members -)

  • 강상훈;한만엽;조병두
    • 대한토목학회논문집
    • /
    • 제32권4A호
    • /
    • pp.207-215
    • /
    • 2012
  • 본 연구에서는 비대칭 연결재를 갖는 조립식 압축부재의 연결재 간격에 따른 좌굴 거동을 알아보기 위한 실 대형 실험을 실시하였다. 압축부재인 H-300 형강 10 m 부재 3개를 볼트 연결하여 총 길이 30 m가 되도록 2 m 간격으로 2열 배치한 후 연결재 간격이 4 m, 5 m, 6 m인 경우에 대하여 압축 실험을 실시하였다. 본 논문에서는 연결재 간격에 따른 실험 좌굴하중을 평가하고 이를 유한요소해석 좌굴하중 및 Timoshenko 식에 의한 좌굴하중과 비교 분석 하였으며, 연결재 간격의 증가에 따른 조립식 압축부재의 좌굴 거동으로 인한 종방향 변위, 횡방향 변위, 변형률 등을 분석하였다. 실험 결과 연결재 간격이 증가함에 따라 조립식 압축부재의 좌굴 하중은 비선형적으로 급격히 감소함을 알 수 있었다. 그리고 연결재 간격이 증가함에 따라 실험 좌굴 하중과 이론 좌굴 하중의 차이 및 실험 좌굴 하중과 유한요소해석 결과의 차이도 증가되는 것으로 나타났다.

동적개념에 의한 변단면 기둥의 좌굴하중 (Buckling Loads of Tapered Columns due to Dynamic Concept)

  • 이병구;우정안
    • 한국농공학회지
    • /
    • 제34권4호
    • /
    • pp.97-105
    • /
    • 1992
  • The main purpose of this paper is to present the buckling loads of tapered columns due to dynamic concept. The ordinary differential equation governing the bucking loads for tapered columns is derived on the basis of dynamic concept. Three kinds of cross sectional shape are considered in the governing equation. The Improved Euler method and Determinant Search method are used to perform the integration of the differential equation and to determine the buckling loads, respectively. The hinged-hinged, hinged-clamped, clamped-clamped and free-clamped end constraints are applied in numerical examples. The buckling loads are reported as the function of section ratio, and the effects of cross-sectional shapes are investigated. The buckling load equation, which are fitted by numerical data, are proposed as a function of section ratio. It is expected that these equations can be utilized in structural engineering field.

  • PDF

3차이론에 의한 변단면 강말뚝의 좌굴하중및 후좌굴 거동 (Buckling Loads and Postbuckling Behavior of Tapered Piles by Third Order Theory)

  • 이병구;정진섭;이문수;박승해
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.56-66
    • /
    • 1994
  • Numerical methods are developed to obtain the buckling loads and to analyze the postbuckling behavior of the tapered steel piles. The nondimensional differential equations governing the elastica of the buckled piles are derived by the third order theory and solved numerically. The Runge-Kutta method is used to solve the differential equations, and the bisection method is used to obtain the buckling loads and the reaction moments of the clamped ends. Both the linear and stepped taper of the steel piles are considered as the variable crosssection in the differential equations. As the numerical results, the equilibrium paths, the buckling loads vs. section ratio curves and the typical elastica and the bending moment diagrams of the buckled piles are presented in figures. Experimental studies that complement the theoretical results are presented. It is expected that the numerical methods developed in this study for calculating the buckling loads and analyzing the postbuckling behavior of the steel piles are used in the structural and foundation engineering.

  • PDF

Approximate formulation for bifurcation buckling loads of axially compressed cylindrical shells with an elastic core

  • Sato, Motohiro;Shimazaki, Kenta
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.313-320
    • /
    • 2011
  • This paper proposes an approximate formulation to estimate the bifurcation buckling loads of cylindrical shells with soft elastic cores under the conditions of axial compression. In general, thin-walled, axially compressed cylindrical shells buckle into a diamond pattern in the elastic range. However, buckling symmetrical with respect to the axis of the cylinder may occur when the cylindrical shell is supported by an elastic medium. By considering this characteristic, we introduce the simplified approximate formulation that can give sufficiently accurate results for the bifurcation buckling loads of cylindrical shells. Moreover the results are compared with the exact buckling loads in order to confirm the accuracy of the proposed approximate formulation.

Buckling of FGM elliptical cylindrical shell under follower lateral pressure

  • Moradi, Alireza;Poorveis, Davood;Khajehdezfuly, Amin
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.175-191
    • /
    • 2022
  • A review of previous studies shows that although there is a considerable difference between buckling loads of structures under follower and non-follower lateral loads, only the buckling load of FGM elliptical cylindrical shell under non-follower lateral load was investigated in the literature. This study is the first to obtain the buckling load of elliptical FGM cylindrical shells under follower lateral load and also make a comparison between buckling loads of elliptical FGM cylindrical shells under follower and non-follower lateral loads. Moreover, this research is the first one to derive the load potential function of elliptical cylindrical shell. In this regard, the FGM cylindrical elliptical shell was modeled using the semi-analytical finite strip method and based on the First Shear Deformation Theory (FSDT). The shell is discretized by strip elements aligned in the longitudinal direction. The Lagrangian and harmonic shape functions were considered in the circumference and longitudinal directions, respectively. The buckling pressure of the shell under follower and non-follower lateral loads was obtained from eigenvalue problem. The results obtained from the model were compared with those presented in the literature to evaluate the validity of the model. A comparison index was defined to compare the buckling loads of the shell under follower and non-follower lateral load. A parametric study was carried out to investigate the effects of material properties and shell geometry characteristics on the comparison index. For the elliptical cylindrical shells with length-to-radius ratio greater than 16 and major-to-minor axis ratio greater than 0.6, the comparison index reaches to more than 20 percent which is significant. Moreover, the maximum difference is about 30 percent in some cases. The results obtained from the parametric study indicate that the buckling load of long elliptical cylindrical shell under non-follower load is not reliable.