• Title/Summary/Keyword: buckling curve

Search Result 101, Processing Time 0.032 seconds

Experimental Study on Compression Behavior between Multi-layered Corrugated Structure and EPS Packaging Materials (골판지 적층재와 EPS 사이의 압축거동에 대한 실험적 연구)

  • Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • The evaluation of the compression behavior of the cushioning material is of importance to achieve appropriate packaging design. In order to change packaging design from polymeric-based to more eco-friendly cellulose-based nire effectively, comparative study on the compression behavior between these two packaging materials is crucial. In this study, the stress-strain behavior, hysteresis loss, and response characteristics for cyclic loading were analyzed through compression tests on multi-layered corrugated structure (MLCS) and expanded polystyrene (EPS) packaging materials. MLCS produced in Korea is produced by winding a certain number of single-faced corrugated paperboard, and the compression behavior of this material was turned out to be 6 stages: elastic stage, first buckling stage, sub-buckling stage, densification stage, last buckling stage and high densification stage. On the other hand, EPS's compression behavior was in 3 stages: linear elastic stage, collapse plateau, and densification stage. The strain energy per unit volume (strain energy density) of MLCS did not differ depending on the material thickness, but it showed a clear difference depending on the raw material and flute type. Hysteresis loss of MLCS ranged from 0.90 to 0.93, and there were no significant differences in the raw material and flute type. These values were about 5 to 20% greater than the hysteresis of the EPS (about 0.78 to 0.87).

A Method for Calculation of Compressive Strength of a One-Sided Stiffened Plate (편면 보강판의 압축강도 해석을 위한 한 방법)

  • C.D. Jang;S.I. Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, a method to overcome inefficiency of the finite element method in the calculation of compressive strength of one-sided stiffened plates, is proposed. In this method the collapse modes of stiffened plates are assumed as follows. a) Overall buckling $\rightarrow$ Overall collapse b) Local buckling $\rightarrow$ Overall collapse c) Local buckling $\rightarrow$ Local collapse In each collapse mode, shape of deflection is assumed, and then elastic large deformation analysis based on the Rayleigh-Ritz method is carried out. One-sided stiffening effect is considered by taking into account of the moment due to eccentricity. Plastic analysis by assuming hinge lines is also carried out. The ultimate strength of a stiffened plate is obtained as the point of intersection of the elastic analysis curve and the plastic one. From this study, it is concluded that the angles between the plastic hinge lines in plastic collapse mode are determined as the ones which give the minimum collapse load, and these angles are different from the ones assumed in the previous studies. Minimum stiffness ratios can also be calculated. Calculated results according to this method show good agreements with the results by the finite element method.

  • PDF

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

  • Shariati, M.;Hatami, H.;Torabi, H.;Epakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.753-762
    • /
    • 2012
  • The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

Evaluation of P-M Interaction Curve for Circular Concrete-Filled Tube (CFT) Column (원형 콘크리트 충전 강관(CFT) 기둥의 P-M 상관 곡선 평가)

  • Moon, Jiho;Park, Keum-Sung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.355-365
    • /
    • 2014
  • Concrete-filled tubes (CFTs) have been used in civil engineering practices as a column of buildings and a bridge pier. CFTs have several advantages over the conventional reinforced concrete columns, such as rapid construction, enhanced buckling resistance, and inherited confinement effect. However, CFT component have not been widely used in civil engineering practice, since the design provisions among codes significantly vary each other. It leads to conservative design of CFT component. In this study, the design provisions of AISC and EC4 for CFT component were examined, based on the extensive test results conducted by previous researchers and finite element analysis results obtained in this study. Especially, the focus was made on the validation of P-M interaction curves proposed by AISC and EC4. From the results, it was found that the current design codes considerably underestimated the strength of CFT component under general combined axial load and bending. Finally, the modified P-M interaction curve was proposed and successfully verified.

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.877-882
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam stucture is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively targe unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

  • PDF

Derivation of Loading Conditions for Tube Hydroforming Process using Adaptive Method (Adaptive 방법을 이용한 관재액압성형조건 도출)

  • Heo, Seong-Chan;Kim, Jeong;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.642-647
    • /
    • 2007
  • Determination of loading conditions for tube hydroforming(THF) process that implies an amount of the increment in axial feeding and internal pressure for each step is one of the most important constituents at the process design level. On account of the fact that those design factors mentioned above are imposed simultaneously during the process, suitable loading conditions are required to obtain robust products without any failure such as buckling, necking, bursting and so on. In which, especially, bursting is well known as the most frequently occurred failure in general THF process. In this study, therefore, determination of the loading condition based on the adaptive method was carried out to obtain safe loading paths. In addition, forming limit curves are applied to evaluate the derived loading conditions by using the simulation results. Consequently, it is found that described method in this study for THF process design is useful and has a feasibility.

  • PDF

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1053-1059
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam structure is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively large unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

A Study on the Bending Buckling Behavior of Circular Cylindrical Shells (원통형 쉘의 휨 좌굴 거동에 대한 연구)

  • 정진환;김성도;하지명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.208-215
    • /
    • 1998
  • A stability problems of isotropic shells under pure bending is investigated based on the classical shells theory. The governing equations of stability problem presented by Donnell and Love, are developed and the solutions for the cylindrical shells are obtained by using Galerkin method. Bending moment is applied at the ends of the cylindrical shell as a from of distributed load in the shape of sine curve. For the isotropic materials, the result of the general purpose structural analysis program based on the finite element method are compared with the critical moment obtained from the classical shell theories. The critical loads for the cylindrical shells with various geometry can not be evaluated with a simple equation. However, accurate solutions for the stability problems of cylindrical shells can be obtained through the equilibrium equation developed in the study.

  • PDF