• Title/Summary/Keyword: buckling and vibration analysis

Search Result 174, Processing Time 0.024 seconds

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

A Study on the Design Optimization of Composite cylindrical shells with Vibration, Buckling Strength and Impact Strength Characteristics (복합재료 원통쉘의 진동, 좌굴강도, 충격강도 특성 및 그의 설계최적화에 관한 연구)

  • 이영신;전병희;오재문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.48-69
    • /
    • 1997
  • The use of advanced composite materials in many engineering structures has steadily increased during the last decade. Advanced composite materials allow the design engineer to tailor the directional stiffness and the strength of materials as required for the structures. Design variables to the design engineer include multiple material systems. ply orientation, ply thickness, stacking sequence and boundary conditions, in addition to overall structural design parameters. Since the vibration and impact strength of composite cylindrical shell is an important consideration for composite structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of composite cylindrical shell for maximum natural frequency, buckling strength and impact strength are developed by analytic and numerical method. The effect of parameters such as the various composite material orthotropic properties (CFRP, GFRP, KFRP, Al-CFRP hybrid), the stacking sequences, the shell thickness, and the boundary conditions on structural characteristics are studied extensively.

  • PDF

An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza;Boreiry, Mahya
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.179-200
    • /
    • 2016
  • In this paper the differential transformation method (DTM) is utilized for vibration and buckling analysis of nanotubes in thermal environment while considering the coupled surface and nonlocal effects. The Eringen's nonlocal elasticity theory takes into account the effect of small size while the Gurtin-Murdoch model is used to incorporate the surface effects (SE). The derived governing differential equations are solved by DTM which demonstrated to have high precision and computational efficiency in the vibration analysis of nanobeams. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of thermal loading, small scale and surface effects, mode number, thickness ratio and boundary conditions on the normalized natural frequencies and critical buckling loads of the nanobeams in detail. The results show that the surface effects lead to an increase in natural frequency and critical buckling load of nanotubes. It is explicitly shown that the vibration and buckling of a nanotube is significantly influenced by these effects and the influence of thermal loadings and nonlocal effects are minimal.

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

Investigation of vibration and stability of cracked columns under axial load

  • Ghaderi, Masoud;Ghaffarzadeh, Hosein;Maleki, Vahid A.
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1181-1192
    • /
    • 2015
  • In this paper, an analytical method is proposed to study the effect of crack and axial load on vibration behavior and stability of the cracked columns. Using the local flexibility model, the crack has been simulated by a torsional spring with connecting two segments of column in crack location. By solving governing eigenvalue equation, the effects of crack parameters and axial load on the natural frequencies and buckling load as well as buckling load are investigated. The results show that the presents of crack cause to reduction in natural frequencies and buckling load whereas this reduction is affected by the location and depth of the crack. Furthermore, the tensile and compressive axial load increase and decrease the natural frequencies, respectively. In addition, as the compression load approaches to certain value, the fundamental natural frequency reaches zero and instability occurs. The accuracy of the model is validated through the experimental data reported in the literature.

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman;V.M. Sreehari
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.601-615
    • /
    • 2024
  • Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

Vibration behaviour of axially compressed cold-formed steel members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.221-236
    • /
    • 2006
  • The objective of this work is to describe the main steps involved in the derivation of a GBT (Generalised Beam Theory) formulation to analyse the vibration behaviour of loaded cold-formed steel members and also to illustrate the application and capabilities of this formulation. In particular, the paper presents and discusses the results of a detailed investigation about the local and global free vibration behaviour of lipped channel simply supported columns. After reporting some relevant earlier GBT-based results dealing with the buckling and vibration behaviours of columns and load-free members, the paper addresses mostly issues concerning the variation of the column fundamental frequency and vibration mode nature/shape with its length and axial compression level. For validation purposes, some GBT-based results are also compared with values obtained by means of 4-node shell finite element analyses performed in the code ABAQUS.

A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates

  • Nguyen, Kien T.;Thai, Tai H.;Vo, Thuc P.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.91-120
    • /
    • 2015
  • A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates is presented in this paper. It contains only four unknowns, accounts for a hyperbolic distribution of transverse shear stress and satisfies the traction free boundary conditions. Equations of motion are derived from Hamilton's principle. The Navier-type and finite element solutions are derived for plate with simply-supported and various boundary conditions, respectively. Numerical examples are presented for functionally graded sandwich plates with homogeneous hardcore and softcore to verify the validity of the developed theory. It is observed that the present theory with four unknowns predicts the response accurately and efficiently.

Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects

  • Mobasseri, Saleh;Sadeghi, Mehdi;Janghorban, Maziar;Tounsi, Abdelouahed
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.25-35
    • /
    • 2020
  • We carry the knowledge that the skeleton bones of the human body are not always without defects and some various defects could occur in them. In the present paper, as the first endeavor, free vibration and buckling analysis of femur bones with femoral defects are investigated. A major strength of this study is the modeling of defects in femur bones. Materialise Mimics software is adopted to model the bone geometry and the SOLIDWORKS software is used to generate the defects in bones. Next, the ABAQUS software is employed to study the behaviors of bones with defects.

A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates

  • Bui, Tinh Quoc;Nguyen, Minh Ngoc
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.579-598
    • /
    • 2011
  • The present work mainly reports a significant development of a novel efficient meshfree method for vibration and buckling analysis of orthotropic plates. The plate theory with orthotropic materials is followed the Kirchhoff''s assumption in which the only deflection is field variable and approximated by the moving Kriging interpolation approach, a new technique used for constructing the shape functions. The moving Kriging technique holds the Kronecker delta property, thus it makes the method efficiently in imposing the essential boundary conditions and no special techniques are required. Assessment of numerical results is to accurately illustrate the applicability and the effectiveness of the proposed method in the class of eigenvalue problems.