• Title/Summary/Keyword: bubbling

검색결과 220건 처리시간 0.02초

액상 LPG 직접 분사식 기관 개발을 위한 인젝터 내 기포발생현상의 원인 규명에 관한 기초연구 (A Fundamental Study on the Investigation of Bubbling Phenomenon in the Injector for the Development the LPDi Engine)

  • 노기철;이종태
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.1-8
    • /
    • 2006
  • One of the most important subjects to develop a LPDi engine is to suppress the bubble generated inside the liquid LPG direct injector. For the purpose of this, the analogy visualization injector to visualize the generation and behaviors of bubble is manufactured, and the bubbling phenomenon and behaviors of bubble are visualized and investigated according to the change of the temperature around an injector wall, fuel pressure and a needle configuration. As results, it was found that the bubble inside the injector is generated around an injector hole and after rising by buoyancy it disappears around the top of a nozzle. The number of bubbles generated is little changed regardless of the lapse of time but it remarkably increases as the temperature around the injector increases. Also, it was known that as the sac volume in LPDi injector decreases the generation of bubble is more active and the rising velocity of bubble generated is increased.

용융(熔融) Bi-Pb-Sb계(系) 합급(合金)의 산화(酸化)에 의한 Sb과 Pb 제거(除去) (The Selective Removal of Sb and Pb from Molten Bi-Pb-Sb Alloy by Oxidation)

  • 김세종;손인준;손호상
    • 자원리싸이클링
    • /
    • 제21권4호
    • /
    • pp.53-59
    • /
    • 2012
  • 본 연구에서는 비철제련의 공정 부산물에서 얻어진 Bi-Pb-Sb 3원계 합금 용탕의 산화반응에 따른 Sb과 Pb의 제거거동에 대하여 조사하였다. $N_2+O_2$ 가스를 침지 노즐을 통해 1173 K의 합금 용탕 중에 취입하여 Sb을 산화물과 금속상의 혼합물로 분리 회수할 수 있었다. 그리고 923 K의 Bi-Pb 2원계 용탕에 $N_2+O_2$ 가스를 취입하면 Pb가 산화되어 슬래그상으로 제거될 수 있으나, Bi도 동시에 산화되어 Bi를 정제할 수 없었다.

Comparison of CO on Carbon-supported Pt Catalysts Prepared by CO Gas Bubbling and Methanol Dehydrogenation

  • Han, Kee-Sung;Hwang, Ki-Ju;Han, Oc-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2442-2444
    • /
    • 2007
  • CO adsorbates on the surface of Pt supported on carbon catalysts (Pt/C) were investigated by CO stripping voltammetry. Three types of CO adsorbed samples were prepared: by methanol dehydrogenation only (COm), by CO gas bubbling only (COg), and by methanol dehydrogenation followed by CO gas bubbling (COm+g). Our coverage data show that CO gas can be adsorbed on Pt/C catalyst already saturated with CO adsorbates by methanol dehydrogenation. The COm+g sample showed the properties of both COm as well as COg samples in terms of the potential although the CO adsorbed by dehydrogenation was completely exchanged with CO in the electrolyte solution. Therefore, the oxidation pathways of CO on Pt/C were observed to depend on the initial adsorption conditions of CO more strongly than on the CO coverage. Our results imply that an initial CO poisoning condition in fuel cell operation is an important factor to determine the difficulty in removing the adsorbed CO and confirm that the properties of the adsorbed CO do not change even with chemical replacement with CO in different conditions. In addition, our results indicate a low CO surface mobility on the Pt in an electrolyte solution.

기체-고체 유동층에서 사이클론과 프리보드의 형상이 고체 비산 손실에 미치는 영향 (Effects of Cyclone and Freeboard Geometry on Solid Entrainment Loss in a Gas-Solid Fluidized Bed)

  • 류호정;조성호;이승용;이도연;남형석;황병욱;김하나;원유섭;김정환;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.330-337
    • /
    • 2019
  • Effects of cyclone and freeboard geometry on solid entrainment loss were investigated with two different types of cyclones and bubbling beds in a gas-solid fluidized bed system. The solid entrainment loss was measured by collected fines during continuous solid circulation condition. Bubbling bed which has an expanded freeboard showed less solid entrainment than the bubbling bed which has a straight freeboard. The cyclone which has a wide gas-solid mixture inlet showed less solid entrainment loss than the cyclone which has a narrow gas-solid mixture inlet. Moreover, the cyclone has a wide gas-solid mixture inlet can capture smaller particles.

Air horizontal jets into quiescent water

  • Weichao Li ;Zhaoming Meng;Jianchuang Sun;Weihua Cai ;Yandong Hou
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2011-2017
    • /
    • 2023
  • Gas submerged jet is an outstanding thermohydraulic phenomenon in pool scrubbing of fission products during a severe nuclear accident. Experiments were performed on the hydraulic characteristics in the ranges of air mass flux 0.1-1400 kg/m2s and nozzle diameter 10-80 mm. The results showed that the dependence of inlet pressure on the mass flux follows a power law in subsonic jets and a linear law in sonic jets. The effect of nozzle submerged depth was negligible. The isolated bubbling regime, continuous bubbling regime, transition regime, and jetting regime were observed in turn, as the mass flux increased. In the bubbling regime and jetting regime, the air volume fraction distribution was approximately symmetric in space. Themelis model could capture the jet trajectory well. In the transition regime, the air volume fraction distribution loses symmetry due to the bifurcated secondary plume. The Li correlation and Themelis model showed sufficient accuracy for the prediction of jet penetration length.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

기포유동층 고분자 중합 반응기에서의 슬러그 특성 (Slug Characteristics in a Bubbling Fluidized Bed Reactor for Polymerization Reaction)

  • 고은솔;강서영;서수빈;김형우;이시훈
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.651-657
    • /
    • 2020
  • 고체 입자들이 유체처럼 움직이는 유동층 공정은 에너지 전환 공정뿐만 아니라 범용 고분자 수지의 생산 공정에도 이용되고 있다. 범용 고분자 수지 중의 하나인 LLDPE(Linear low density polyethylene)도 기포 유동층 공정을 통해 전세계에서 생산되고 있다. 입자 크기에 비해 밀도가 낮은 LLDPE 입자들은 고분자 중합 반응을 위해 공급되는 수소에 의해서 유동화된다. 그러나 LLDPE 생산 공정은 기포유동층 공정임에도 불구하고 발생한 슬러그로 인하여 반응에 영향을 끼쳐 공정의 효율 저하를 불러올 수 있다. 이에 본 연구에서는 상용 고분자 반응기를 모사한 pilot 규모의 고분자 합성 반응기(0.38 m l.D., 4.4 m High)와 동일한 시뮬레이션 모델을 구축하여 LLDPE 입자의 유동화 상태를 고찰하였다. 특히 기체 유속(0.45-1.2 m/s), 고체 입자 밀도(900-1900 kg/㎥), 입자 구형도(0.5-1.0), 입자 크기(120-1230 ㎛)의 변화에 따른 슬러그 특성을 세밀하게 고찰하기 위하여 전산입자유체해석(Computational particle-fluid dynamics, CPFD)을 이용하였다. CPFD를 통해서 일부 실험자들만 고찰할 수 있었던 flat slug의 발생을 시각적으로 구현하였으며 밀도, 구형도, 크기 등의 고체의 물리적 특성을 변화시킴에 따라 슬러그 발생을 저감시킬 수 있음을 확인하였다.

Size Measurements of Droplets Entrained in a Stagnant Bubbling Liquid Column

  • Jeong, Hae-Yong;No, Hee-Cheon;Song, Chul-Hwa;Chung, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.254-259
    • /
    • 1996
  • Phase Doppler particle analyze. (PDPA) is a instrument which can be used to obtain simultaneous size and velocity measurements in a multiphase flow. In this study, the size of the water droplets entrained from a bubbling surface of a stagnant liquid column is measured by PDPA with a specially designed transmitter of long focal length and large beam diameter. The test section tube is made of acryle with 18 mm I.D. and 900 mm length. The experimental data are obtained for the air superficial velocity between 0.7 m/s to 3.4 m/s at atmospheric pressure. The experimental results show that there exists large difference in the entrainment mechanism between the churn-turbulent flow and annular flow. Through the present study, the phase Doppler analyzer system is shown to be successfully applied to measure particle sizes larger than $2,000\mu\textrm{m}$ if a transmitter of long focal length is utilized.

  • PDF

폐기물 열분해/용융 소각 시스템의 용융로 Scale-up 연구 (Scale-up of Melting Chamber for a Pyrolysis Melting Incinemtion System)

  • 양원;김봉근;류태우;전금하
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.168-175
    • /
    • 2007
  • Ash melting chamber is one of the key facility of the pyrolysis-melting incineration system, and it should be designed and operated very carefully for avoiding solidification of slag. In this study, an example of numerical and experimental scale-up process of the melting chamber, in which high speed air is injected to the molten slag and generates bubbles, which enhances agitation of the slag and char combustion, is presented. Cold flow test, combustion and melting test in a lab-scale (30 kg/hr) chamber and a pilot scale (200 kg/hr) chamber. Minimum energy for maintaining molten slag is derived, and it was found that the molten slag can be maintained efficiently by concentrating heat into the bubbling slag.

  • PDF