• Title/Summary/Keyword: bubbles

Search Result 879, Processing Time 0.025 seconds

Wahsing Effect of Micor-Bubbles and Changes in Quality of Lettuce (Lacutuca sativa L.) during Storage (마이크로버블에 의한 상추의 세척효과 및 저장 중 품질변화)

  • Lee, Seon-Ah;Youn, Aye-Ree;Kwon, Ki-Hyun;Kim, Byeong-Sam;Kim, Sang-Hui;Cha, Hwan-Soo
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.321-326
    • /
    • 2009
  • We assessed quality changes in and washing effects (time and method) on lettuce (Lactuca sativa L.) treated with micro-bubbles. Samples were treated with micro-bubbling for 1, 3, or 5 min, and the 5-min treatment yielded the best results in terms of reduced total microorganism counts, sensory aspects, and degree of washing. Total microorganism counts were 4.30 log colony-forming units (CFU)/g in unwashed lettuce(CT), 4.10 log CFU/g in hand-washed lettuce (HW), 3.98 log CFU/g in conventional, bubble-washed lettuce (BW) and 3.25 log CFU/g in micro-bubble-washed lettuce (MW). In comparison, total counts of samples examined after 10 days of storage were 7.00 log CFU/g for CT, 6.19 log CFU/g for HW, 6.02 log CFU/g for BW, and 5.89 log CFU/g for MW. The lowest counts were seen after micro-bubble treatment. BW and MW samples showed significantly higher counts than did CT and HW samples. In general, BW and MW samples did not vary significantly in count numbers. MW showed a 2.3-fold lower residual pesticide level compared with CT, and also had the lowest level of impurities. HW and BW samples were not well washed.

Holdup Characteristics of Small Bubbles in a Viscous Slurry Bubble Column (점성슬러리 기포탑에서 작은 기포의 체류량 특성)

  • Jin, Hae-Ryong;Song, Yang-Ho;Kang, Yong;Jung, Heon;Lee, Ho-Tae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • Holdup characteristics of small bubbles were investigated in a viscous slurry bubble column. The phase holdup of small bubbles was obtained from the knowledge of total bubble(gas) holdup and large bubble holdup, which were measured by mean of static pressure drop method and dual resistivity probe method, respectively. Effects of gas velocity, viscosity of continuous liquid phase and solid fraction in the slurry phase on the small bubble holdup as well as holdups of total bubble(gas) and large bubble in a viscous slurry bubble column. The small bubble holdup increased with increasing gas velocity but decreased with increasing liquid viscosity or solid fraction in the slurry phase. In addition the fraction of small bubble in the total bubble(gas) holdup increased with increasing gas velocity but decreased with increasing liquid viscosity or solid fraction in the slurry phase. It was revealed that the rising velocity of large bubble did not related to the holdup of small bubble in a viscous slurry bubble column.

Characteristics of Bubble Flow Behavior in a Gas-liquid Countercurrent Bubble Column Bioreactor (기-액 향류 흐름 기포탑 생물 반응기에서 기포 흐름 거동 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Lee, Chan-Gi;Jung, Sung-Hyun;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.272-277
    • /
    • 2005
  • Characteristics of bubbling behavior and bubble properties were investigated in a gas-liquid countercurrent bubble column of in diameter 0.152 m and 3.5 m in height, respectively. Effects of gas and liquid velocities and bubble distribution mode(even, wall-side, central or asymmetric distribution) on the bubble properties such as chord length, frequency, rising velocity and holdup in the reactor were measured and examined by means of dual resistivity probe method. The bubble size, frequency and holdup increased with increasing gas($U_G$) or liquid velocity($U_L$). The rising velocity of bubbles increased with increasing $U_G$, whereas decreased with increasing $U_L$. The uniformity of bubble size distribution and bubble holdup decreased when the distribution mode of bubbles at the gas distributor was changed from even to wall-side, central or asymmetric. The central distribution of bubbles was better than asymmetric mode but worse than wall-side distribution, in considering the bubble holdup and uniformity of distribution.

Evaluation of Dust Removal Efficiency on Roadway Structures Using Ultrafine Bubble Water Jet (초미세기포 water jet을 이용한 도로 시설물 분진 제거 효율 평가)

  • Kim, Hyun-Jin;Park, Il-gun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • A road structure washing vehicle equipped with a 4 HP, 80 LPM ultrafine bubble generator was used to clean a tunnel wall and the surface of the surrounding structure, consisting of concrete and tiles, in a heavy traffic area around an apartment complex in the city. Ultrafine bubbles were generated by supplying air at 2 to 3 LPM and using a specially designed nozzle, whereas fine bubbles made by an impeller in a gas-liquid mixing self-priming pump were produced with an average diameter of 165.4 nm and 6.81 × 107 particles mL-1. Using a high pressure washer gun that can perform high-pressure cleaning at 150 bar and 30 LPM, ultrafine bubbles were used to wash dust adsorbed on the surface of the road structures. The experimental analysis was divided into before and after washing. The samples were analyzed by applying ISO 8502-3 to measure surface contamination of dust adsorbed on the surface. Using the transparent tape attached to the surface, the removal rate was calculated by measuring the weight of the dust, and the number of particles was calculated using the gravimetric method and the software, ImageJ. The results of the experiment showed that the number of dust particles adsorbed on the tile wall surface before and after washing were 3,063 ± 218 particles mL-1 and 20 ± 5 particles mL-1, respectively, with weights of 580 ± 82 mg and 13 ± 4 mg. Particles on the surface of the concrete structure before and after washing were 8,105 ± 1,738 particles mL-1 and 39 ± 6 particles mL-1, respectively, with weights of 1,448 ± 190 mg and 118 ± 32 mg.

Acoustic radiation from a line array of bubbles in water (수중 공기방울의 선형 배열에 의한 음향 방출 특성)

  • 최복경
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.181-185
    • /
    • 1993
  • 물 속에 만들어진 공기방울들은 각자 자신의 반지름에 반비례하는 공진주파수로 음파를 방출하며, 많은 공기방울들이 모인 공기방울 집단은 집단의 전체 크기에 반비례하는 집단 공진주파수를 가진다는 현상이 그동안 연구되어 왔다. 그러나, 수십, 수백 개의 유한한 개수를 가진 공기방울들의 음파방출 주파수 특성 연구는 부족한 실정이다. 본 연구에서는 수중에 일차원 배열의 공기방울들을 발생시켜 공기방울들에서 나오는 음파방출 주파수를 측정하였다. 수중에 형성된 공기방울들은 그들 간에 거리 간격이 존재하므로 본 연구에서는 공기방울들 간의 상호작용이 변화한다고 간주한 유효 결합 조화진동자 모형을 새로이 만들어 해석하였으며, 실험값과 좋은 이치를 보여주었다.

  • PDF

Physical Modeling of Aluminum-Foam Generation (알루미늄 발포공정의 물리적 모델링)

  • Oak S. M.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.297-300
    • /
    • 2001
  • Physical modeling technique is applied to investigate foam generation in molten aluminum. By using room temperature water with specially designed equipment, the effects of stirrer type, fluid viscosity(glycerine added to water) and stirring velocity on foam generation behaviors are intensively analysed The distribution and size of bubbles varied with each process parameters but the most important parameters are stirring velocity and fluid viscosity. The results obtained from physical simulation have been confirmed by actual aluminum foam generation experiment at various process variables.

  • PDF

A NUMERICAL STUDY ON THE CAVITATION BUBBLE-SHOCK INTERACTION (캐비테이션 기포와 충격파의 간섭에 관한 연구)

  • Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.185-187
    • /
    • 2009
  • A density based method with homogeneous cavitation model to investigate cavitation-bubble collapsing behavior is proposed and applied to bubble-shock interaction problems. By applying this method, cylindrical bubbles located in the liquid and incident liquid shock wave are computed. Bubble collapsing behavior, shock-bubble interaction and shock transmission/reflection pattern are investigated.

  • PDF

Experimental Studies on Acration in Water

  • Paik, Nam-Won;Chung, Kyou-Chull
    • Journal of Environmental Health Sciences
    • /
    • v.2 no.1
    • /
    • pp.25-28
    • /
    • 1975
  • The main purpose of the aeration units in activated sludge process is to enable micro-organisms to metabolize the constituents of the waste effectively by supplying sufficient oxygen for their respiration. Normally, aeration is achieved by bringing the mixture of waste and sludge into intimate contact with air. The main type of aeration unit is diffused air unit in which air is injected into the liquid in the form of bubbles. The object of these laboratory studies is to compare the performance of three laboratory scale aeration systems at various depths of submergence, aerating water with and without the addition of a surface active agent.

  • PDF

초음파 Spectroscopy에 의한 Resin내의 크기 측정에 관한 연구

  • 한응교;김용재;이범성;박익근;소반신부
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.139-143
    • /
    • 2001
  • In manufacturing process of semiconductor package, thermal stress owing to high temperature in moulding and bubbles generated in chip bonding process become main causes to producing void. Therefore, on this study we evaluated quantitatively void size by ultrasonic spectroscopy method which analyze the frequency of this received pulse using pulses with broad band frequency, and after destructive test we verified effectiveness of sizing void by ultrasonic spectroscopy as we find error degree between the real size of void and the sizing void by ultrasonic spectroscopy.

Sizing of lnner Flaw in Resin by using Ultrasonic spectroscopy (초음파 분량법에 의한 레진 내부 결합의 크기 측정에 관한 연구)

  • Han, E.K.;Kim, Y.J.;Park, I.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.182-190
    • /
    • 1993
  • In manufacturing process of semiconductor package, the thermal stress owing to high temperature in moulding and the bubbles generated in chip bonding process become main causes to produce void. On this study we evaluated quantitatively void size by use of ultrasonic spectroscopy method which analyze the reflective pulses with broad band frequency in frequency domain, and after destructive testing we verified effectiv- eness of sizing void by use of ultasonic spectroscopy.

  • PDF