• 제목/요약/키워드: bubbles

검색결과 879건 처리시간 0.025초

단일 구형 기포의 수학적 모델에 대한 수치적 해석 모델 (Numerical Modeling of the Mathematical Model of Single Spherical Bubble)

  • 강동근;양현익
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.731-738
    • /
    • 2010
  • Cavitation is described by formation and collapse of the bubbles in a liquid when the ambient pressure decreases. Formed bubbles grow and collapse by change of pressure, and when they collapse, shockwave by high pressure is generated. In general, bubble behavior can be described by Rayleigh-Plesset equation under adiabatic or isothermal condition and hence, phase shift by the pressure change in a bubble cannot be considered in the equation. In our study, a numerical model is developed from the mathematical model considering the phase shift from the previous study. In the developed numerical model, size of single spherical bubble is calculated by the change of mass calculated from the change of the ambient pressure in a liquid. The developed numerical model is verified by a case of liquid flow in a narrow channel.

뿌연 효과와 디테일한 긁힘 표현을 이용한 균열된 얼음 표면 표현 (Representation of Cracked Ice Surfaces with Cloudy Effects and Detailed Scratches)

  • 김종현
    • 한국멀티미디어학회논문지
    • /
    • 제21권7호
    • /
    • pp.787-794
    • /
    • 2018
  • We propose a new framework which expresses the mist and scratches of cracked ice by an impact. We combine the grid projection technique, boundary particles method, and level-set method commonly used in fluid simulations to determine the region on the surface of an ice object which is affected by a collision. Mist is then generated in proportion to the impact, and immediately diffused, using a geodesic distance field to limit dissipation. The gradient of the mist is subsequently used to create realistic patterns of scratches and elongated air bubbles. Cracks of the ice object can also be considered, and the density of the mist made to vary realistically between fragments. As a result, our method not only represents high-quality ice effects, but also allows easy integration into existing rigid body simulation solvers.

ESWL장치에 의한 Cavitation과 방사음과의 관계에 관한 연구 (A Study about Relation between Cavitation and Sound Radiated by Extracorporeal Shock Wave Lithotripter)

  • 장윤석;박무훈
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.311-312
    • /
    • 1998
  • It is an important issue that cavitation is always deal with shock wave. During operation with ESWL(Extracorporeal Shock Wave Lithotriptor), the cavitation bubbles are generated at the focal region. This phenomenon is an important problem because the cavitation bubbles have a harmful effect on the disintegration ability and the human body. In this paper, therefore, we investigate the relation between the cavitation and the radiated sound due to the ESWL.

  • PDF

Properties of Low Density Foamed Concrete for Building Construction Using Anionic Surfactants of Synthetic and Natural Materials

  • Jeong, Ji-Yong;Kim, Jin-Man
    • 한국건축시공학회지
    • /
    • 제11권6호
    • /
    • pp.557-566
    • /
    • 2011
  • The surfactants facilitate the formation of foam bubbles under a proper condition and provide stability of foam bubbles by decreasing the surface tension of solutions and increasing the viscosity of foam surface. However, there have been almost no practical data of foam concrete in this regard so far. This study aims to understand the effects of foaming agents such as anionic synthetic surfactant and anionic natural material surfactant on the low density foamed concrete. From the experiment, the vegetable soap of anionic natural material surfactants showed a higher foaming rate, more open pores, slightly lower compressive strength, and a higher permeability coefficient compared to the vegetable soap of anionic synthetic surfactants. It is believed that the natural material surfactants make not only the surface tension of the solution low but also the viscosity of slurry high.

Saturated Boiling Heat Transfer of Freon-113 in Hemispherical Narrow Space and Implications for Degraded Core Coolability in Reactor Vessel Lower Plenum

  • Bang, Kwang-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.574-579
    • /
    • 1995
  • Saturated boiling heat transfer experiment in a hemispherical narrow space is conducted using Freon-113 to investigate an additional heat removal capability through a hypothetical gap between lower head and degraded core. The narrow space of 1mm consists of a 124mm diameter heated stainless steel hemisphere and a glass outer vessel. Within the hemispherical narrow space large coalesced bubbles are produced and these bubbles rise in random direction, causing liquid flow in from the opposite side to fill the region. Such flow in random direction makes the flow field in the narrow space very chaotic and thus enhance heat transfer. The heat transfer coefficient is higher at lower angle and at higher heat flux. The present study shows that the liquid from upper region can effectively penetrate into the gap and augment the heat removal capability through tile gap.

  • PDF

A COMPARATIVE STUDY OF LATTICE BOLTZMANN AND VOLUME OF FLUID METHOD FOR TWO-DIMENSIONAL MULTIPHASE FLOWS

  • Ryu, Seung-Yeob;Ko, Sung-Ho
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.623-638
    • /
    • 2012
  • The volume of fluid (VOF) model of FLUENT and the lattice Boltzmann method (LBM) are used to simulate two-phase flows. Both methods are validated for static and dynamic bubble test cases and then compared to experimental results. The VOF method does not reduce the spurious currents of the static droplet test and does not satisfy the Laplace law for small droplets at the acceptable level, as compared with the LBM. For single bubble flows, simulations are executed for various Eotvos numbers, Morton numbers and Reynolds numbers, and the results of both methods agree well with the experiments in the case of low Eotvos numbers. For high Eotvos numbers, the VOF results deviated from the experiments. For multiple bubbles, the bubble flow characteristics are related by the wake of the leading bubble. The coaxial and oblique coalescence of the bubbles are simulated successfully and the subsequent results are presented. In conclusion, the LBM performs better than the VOF method.

수직관에서 상승하는 Taylor 기포의 수치해석 (Numerical Simulation of a Taylor Bubble Rising in a Vertical Tube)

  • 손기헌
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.373-380
    • /
    • 2001
  • In this study, a single Taylor bubble and a train of Taylor bubbles rising in a vertical tube were simulated numerically. A finite difference method was used to solve the mass and momentum equations for the liquid-gas region. The liquid-gas interface was captured by a level set function which is defined a signed distance from the interface. For a train of Taylor bubbles repeated periodically in space, the periodic conditions were imposed at the boundaries normal to the gravitational direction and the pressure boundary conditions were iteratively determined so that the computed flow rate should be equal to a given flow rate. Based on the numerical simulation, the calculated shape and rise velocity of a Taylor bubble were found to be in good agreement with the experimental data reported in the literature.

Turbulence Generation by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water Flow

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1203-1210
    • /
    • 2003
  • Emission of ultrasonic vibration to turbulent flow promotes the turbulence generation due to the resonantly oscillating pressure field and thereby induced cavitation. In addition, ultrasonic vibration is well transmitted through water and not dissipated easily so that the micro-bubbles involved in the fluid induce the gaseous cavitation if the bubbles are resonated with the ultrasonic field. In the present study, we found through LDV measurement that the gaseous cavitation induced by ultrasonic vibration to CO$_2$saturated water flow in the rectangular cross-sectioned straight duct enhances turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation. We also found that the fluctuating velocity component induced by emitting the ultrasonic vibration in normal direction of a rectangular channel flow can be redistributed to stream-wise component by the agitation of gaseous cavitation.

X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Using X-ray Micro-imaging Technique)

  • 김양민;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1693-1696
    • /
    • 2004
  • Synchrotron X-ray micro-imaging technique was employed to monitor non-invasively the refilling process of water inside the xylem vessels in bamboo leaves. The consecutive phase-contrast X-ray images clearly show both plant anatomy and the transport of water inside the xylem vessels. Traces of water-rise, vapor bubbles and variations of contact angle between the water front and the xylem wall were measured in real time. During the refilling process, air bubbles are removed when the rising water front halts at a vessel end for a while. Subsequently, it starts rising again at a higher velocity than the normal refilling speed. Repeated cavitation seems to deteriorate the refilling ability in xylem vessels. In dark environment, the water refilling process in xylem vessels is facilitated more effectively than in bright illuminated conditions. Finally, X-ray micro-imaging was famed to be a powerful, high resolution, real time imaging tool to investigate the water refilling process in xylem vessels.

  • PDF

고점성 액체 내부에서의 다중 노즐 버블링에 의한 유동특성에 대한 실험적 연구 (An Experimental Study on the Flow Characteristics in Highly Viscous Liquid by Multi-Nozzle Bubbling)

  • 김현동;류승규;김경천
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.195-201
    • /
    • 2007
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filed with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}s\;at\;25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k{\times}2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20nm from the bottom of the mixer.