• Title/Summary/Keyword: bubble size

Search Result 322, Processing Time 0.022 seconds

Measurement of Cavitation Noise of a Hydrofoil and Prediction of Cavity Bubble Behavior (수중익의 캐비테이션 소음 계측 및 캐비티 기포 거동 해석)

  • Jong-Woo Ahn;Kwan-Hyoung Kang;In-Haeng Song;Kyung-Youl Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.40-47
    • /
    • 2000
  • The cavitation noise of a hydrofoil is measured in a cavitation tunnel. It is exhibited that the noise level sharply increases with the inception of cavitation and increase with the decrease of the cavitation number until a moderate cavitation number. Below the cavitation number, the trend is reversed, which may be resulted from the interference effect between cavities. The trajectory of bubble is predicted by using the Lagrangian method. Meanwhile the size of the bubble is predicted based on the Kirkwood-Bethe approximation. The predicted results for the bubble size are compared with the experimental results. It is shown that the numerical method predicts the time history of cavities fairly well.

  • PDF

Thermo-Hydrodynamic Behaviors of Open Channel Flow Inside A Multi-Stage Flash Evaporator (다단 후래시 증발장치내 개수로 유동의 열.수력학적 거동)

  • 설광원;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.702-715
    • /
    • 1990
  • This paper describes behaviors of two-phase open channel flow inside the flash chamber of a horizontal Multi-Stage-Flash evaporator numerically along with the experimental observations. Bubble trajectories and the velocity and temperature distributions of the liquid phase were predicted by using the particle-source-in-cell(PSI-Cell) method with the appropriate bubble motion/growth equations. Size and number of bubble nuclei embedded in the incoming liquid(brine) were taken into account as important parameters in addition to the conventional ones such as the velocity, degree of inlet superheat, inlet opening height, and the liquid level. Bubble motions, which are unsteady, appeared to be mostly determined by the buoyancy and the drag forces. The calculations, though a number of simplifying assumptions were made, reasonably simulated the hydrodynamic behaviors of the two-phase horizontal stream observed in the experiments. The simulated temperature distributions also agreed fairly well with the other's measurements. Non-equilibrium allownaces, evaluated from the simulated temperature distributions, were within the range of those obtained from the existing correlations, and reduced with the increases of the number and size of incoming bubble nuclei due to vigorous flashing.

Effect of Polymer Concentration and Solvent on the Phase Behavior of Poly(ethylene-co-octene) and Hydrocarbon Binary Mixture (Poly(ethylene-co-octene)과 탄화수소 2성분계 혼합물의 상거동에 대한 고분자 농도 및 용매의 영향)

  • Lee, Sang-Ho;Chung, Sung-Yun;Kim, Hyo-Jun;Park, Kyung-Gyu
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.318-323
    • /
    • 2004
  • Cloud-point and bubble-point curves for poly(ethylene-co-13.8 mol% octene) ($PEO_{13.8}$) and Poly(ethylene-co-15.3 mol% octene) ($PEO_{15.3}$) were determined up to $150^{\circ}C$ and 450 bar in hydrocarbons which have different molecular size and structure. Whereas ($PEO_{15.3}$+ n-pentane) system has cloud-point and bubble-point type transitions, ($PEO_{15.3}$+ n-propane) and ($PEO_{15.3}$+ n-butane) systems do only cloud-point type transition. In cyclo-pentane, -hexane, -heptane, and -octane, $PEO_{15.3}$ has a bubble-point transition. ($PEO_{13.8}$+ n-butane) mixture has a critical mixture concentration at 5 wt% PEO. (PEO + hydrocarbon) mixtures exhibit LCST type behavior. Solubility of PEO increases with hydrocarbon size due to increasing dispersion interaction which is favorable to dissolve PEO.

The Growth of Transgenic Tobacco′s Suspension Culture and the Production of β-Glucuronidase in Bubble Column Bioreactor (Bubble column bioreactor에서 형질전환된 담배세포의 성장양상 및 β-Glucuronidase의 생산)

  • 김석우;이동근;현진원;이상현;하종명;하배진;이재화
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.577-583
    • /
    • 2002
  • The growth kinetics and the production of $\beta$-glucuronidase from transgenic tobacco's suspension culture was investigated in the flask culture and a 2.5 L bubble column reactor. The growth of bubble column reactor was similar to that of flask culture. However, in the bubble column reactor, the production of $\beta$ -glucuronidase reached 2850 U/mg (85-fold higher than that of flask culture). In both case, the production level of $\beta$ -glucuronidase was fluctuated, which was resulted from periodical degradation of the protein. Sucrose is important component in plant culture medium. Twice addition of sucrose in bubble column reactor could not improve cell growth, since other components in a medium were already depleted. However, the addition of sugar decreased cell size, which facilitated the operation of bioreactor. The production of $\beta$ -glucuronidase was continuously increased, however final concentration of $\beta$ -glucuronidase was similar to that without sucrose addition.

Experimental study on nucleate boiling heat transfer enhancement using an electric field (전기장을 이용한 핵비등 열전달 촉진에 관한 실험적 연구)

  • Gwon, Yeong-Cheol;Kim, Mu-Hwan;Gang, In-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1563-1575
    • /
    • 1997
  • To understand EHD nucleate boiling heat transfer enhancement, EHD effects on R-113 nucleate boiling heat transfer in a non-uniform electric field were investigated. The pool boiling heat transfer and the dynamic behavior of bubbles in d.c./a.c. electric fields under a saturated or subcooled boiling were studied by using a plate-wire electrode and a high speed camera. From the pool boiling heat transfer study, the shift of the pool boiling curve, the increase of the heat transfer and the delay of ONB and CHF points to higher heat fluxes were observed. From the dynamic behavior of bubbles, it was observed that bubbles departed away from the whole surface of the heated wire in radial direction due to EHD effects by a nonuniform electric field. With increasing applied voltages, the bubble size decreased and the active nucleation site and the departure number of bubbles showed the different trend. The present study indicates that the EHD nucleate boiling heat transfer is closely connection with the dynamic behavior of bubbles and the secondary flow induced near the heated surface. Therefore, the basic studies on the bubble behavior such as bubble frequency, bubble diameter, bubble velocity and flow characteristics are necessary for complete understanding of the enhancement mechanism of the boiling heat transfer using an electric field.

Investigation on Shapes and Acoustic Characteristics of Air Bubbles Generated by an Underwater Nozzle (수중 노즐에서 발생하는 기포의 형상 및 음향 특성 연구)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.190-197
    • /
    • 2006
  • It is well known that the acoustic characteristics of the sea are significantly affected by bubbles which have their own inherent characteristics at the undersea. In this study, the shape and acoustic characteristics of air bubbles generated by an underwater nozzle are calculated numerically, and are measured with a high speed camera and a hydrophone at various air flow rates in the experimental apparatus. As a result of analysis, the shape calculated numerically well matched with measured values at low flow rates, but in case of relatively higher flow rates. the use of correction coefficient is needed for more accurate estimation of the bubble shape. And also the rising velocity of a single bubble is constant regardless of both the bubble size and the flow rate. and the acoustic signal generated when the bubble is produced by an underwater nozzle has the same characteristic of natural frequency of the bubble pulsation, and is agreed with Minnaert's equation if the correction coefficient is considered in accordance with the flow rate.

Development of Wafer Cleaning Equipment Using Nano Bubble and Megasonic Ultrasound (나노 버블과 메가소닉 초음파를 이용한 반도체 웨이퍼 세정장치 개발)

  • Nohyu Kim;Sang Hoon Lee;Sang Yoon;Yong-Rae Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.66-71
    • /
    • 2023
  • This paper describes a hybrid cleaning method of silicon wafer combining nano-bubble and ultrasound to remove sub-micron particles and contaminants with minimal damage to the wafer surface. In the megasonic cleaning process of semiconductor manufacturing, the cavitation induced by ultrasound can oscillate and collapse violently often with re-entrant jet formation leading to surface damage. The smaller size of cavitation bubbles leads to more stable oscillations with more thermal and viscous damping, thus to less erosive surface cleaning. In this study, ultrasonic energy was applied to the wafer surface in the DI water to excite nano-bubbles at resonance to remove contaminant particles from the surface. A patented nano-bubble generator was developed for the generation of nano-bubbles with concentration of 1×109 bubbles/ml and nominal nano-bubble diameter of 150 nm. Ultrasonic nano-bubble technology improved a contaminant removal efficiency more than 97% for artificial nano-sized particles of alumina and Latex with significant reduction in cleaning time without damage to the wafer surface.

  • PDF

A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions (수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구)

  • Choung, Joonmo;Lee, Jae-bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.

Preparation of Porous Inorganic Materials by Foaming Slurry (슬러리 발포에 의한 연속성 무기질 다공체의 제조)

  • 박재구;이정식
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1280-1285
    • /
    • 1998
  • Foaming method is presented the preparation of porous materials from high-concentrated kaolin silica and flyash slurries. The slurries were foamed dried and sintered respectively. The porosity of sintered ma-terials was about 70-75% Mean pore-size was the range of 70-150$\mu\textrm{m}$ and pore structure was continuous Sodium lauryl sulfate anionic surfactant was used as a foaming agent. The foaming ability and the froth sta-bility were increased with increasing the concentration of the foaming agent. But the size of the constituent bubble of froth after foaming process was not affected by the concentration of the foaming agent. These results showed that the mean pore-size of sintered materials was closely related to the froth stability which is related to the change of bubble-size during the drying process.

  • PDF

Experimental study of heat transfer in the surrounding for bubble attached at the upper cooled surface of square cavity using the Thermo-sensitive Liquid-crystal Tracer (열감응액정을 이용한 사각공동내의 상단냉각평판에 형성된 기포 주위의 열전달현상 구명)

  • Kwon, Gi-Han;Eom, Yong-Kyoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.509-515
    • /
    • 2001
  • In a square cavity, the flow phenomena in the surrounding of the bubble attached at the upper cooled solid wall were studied by using a thermo-sensitive liquid-crystal tracer and image processing techniques. This method offers the advantage of measuring the entire flow field in a selected plane within the fluid at a given instant of time in contrast to point by point method like T/C. Quantitative data of the temperature were obtained by applying a colour-image-processing to the. visualized image. As the growing of a bubble, In a bubble size appears the flow phenomena which the direction of flow is reversed in the entire temperature and flow field. The observed phenomena are described with regard to thermocapillary convection.

  • PDF