• Title/Summary/Keyword: bubble rising velocity

Search Result 47, Processing Time 0.019 seconds

A Study on the Flow Characteristics of Bubbles in a Fluidized Bed (유동층에서 기포의 유동특성에 관한 연구)

  • 김용섭
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1996
  • A fluidized bed combustion chamber is widely used to incinerate waste material. The most important factor designing the incinerator is the flow characteristics in a fluidized bed, because combustion efficiency is influenced by the flow characteristics. This paper has invesitigated the flow characteristics of bubbles in fluidized bed by means of meassuring a pressure fluctuation in the fluidized bed. A pressure probe system has used to measure the pressure. The data concerned with bubble rising velocity, bubble size, distribution of bubbles and frequency of bubble generation or decay are obtained to find the flow characteristics of bubbles in the fluidized bed. The result obtained from this experimental study can be used to design the fuel feeding system of fluidized bed combustion type incinerator. And it is possible to predict the mixing of waste material and fluidizing material.

  • PDF

Effect of a Silicone Defoamant on the Motion of Single Air Bubbles Rising in Lubricant

  • Shim, Joosup;Cho, Wonoh;Chung, Keunwoo;Kim, Woung Woon
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • The velocity and motion of single air bubbles rising through lubricant have been experimentally investigated to test the effect of silicon defoamant The investigation reveals that the velocity is markedly retarded by the addition of small amount of silicone defoamant. This retardation of rising velocity of air bubbles is proposed by increasing of Drag force or reducing of Buoyancy force around the surfaces of the bubbles.

  • PDF

Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection (수직상향 기체 주입에 따른 기포 및 액상의 유동분석)

  • 서동표;오율권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.

Two-dimensional Numerical Simulation of the Rising Bubble Flows Using the Two Phase Lattice Boltzmann Method (2상 격자 볼츠만 방법을 이용한 상승하는 기포 유동 2차원 수치 모사)

  • Ryu, Seung-Yeob;Park, Cheon-Tae;Han, Seung-Yeul;Ko, Sung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.31-36
    • /
    • 2010
  • Free energy based lattice Boltzmann method (LBM) has been used to simulate the rising bubble flows with large density ratio. LBM with compact discretization is able to reduce the spurious current of the static bubble test and be satisfied with the Laplace law. The terminal rise velocity and shape of the bubbles are dependent on Eotvos number, Morton number and Reynolds number. For single bubble flows, simulations are executed for various Eotvos number, Morton number and Reynolds number, and the results are agreed well with the experiments. For multiple bubbles, the bubble flow characteristics are related by the vortex pattern of the leading bubble. The coalescence of the bubbles are simulated successfully and the subsequent results are presented. The present method is validated for static, dynamic bubble test cases and compared to the numerical, experimental results.

Generation of sub-micron (nano) bubbles and characterization of their fundamental properties

  • Kim, Sangbeom;Kim, Hyoungjun;Han, Mooyoung;Kim, Tschungil
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2019
  • Although nanobubbles attract significant attention, their characteristics and applications have not been thoroughly defined. There are diverse opinions about the definition of nanobubbles and controversy regarding methods that verify their characteristics. This study defines nanobubbles as having a size less than $1{\mu}m$. The generation of these sub-micron (nano) bubbles may be verified by induced coalescence or light scattering. The size of a sub-micron (nano) bubbles may be measured by optical, and confocal laser scanning microscopy. Also, the size may be estimated by the relationship of bubble size with the dissolved oxygen concentration. However, further research is required to accurately define the average bubble size. The zeta potential of sub-micron (nano) bubbles decreases as pH increases, and this trend is consistent for micron bubbles. When the bubble size is reduced to about 700-900 nm, they become stationary in water and lose buoyancy. This characteristic means that measuring the concentration of sub-micron (nano) bubbles by volume may be possible by irradiating them with ultrasonic waves, causing them to merge into micron bubbles. As mass transfer is a function of surface area and rising velocity, this strongly indicates that the application of sub-micron (nano) bubbles may significantly increase mass transfer rates in advanced oxidation and aeration processes.

Effect of a Thin Wire Insert on the Bubble Rise in a Miniature Tow-Phase Closed Thermosyphon (소형 밀폐형 이상 열싸이펀에서 삽입 세선이 기포상승에 미치는 영향)

  • 김원태;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 1996
  • Experimental investigations are carried out for the characteristics of bubble rise in the Miniature Two-Phase closed Thermosyphon(MTPCT) with a thin wire insert. The working fluids applied as experimental media are of three kinds: water, methanol, and ethanol. The effects of combination of the inclination with diametric ratio $\alpha$(=d$_{0}$/D$_{I}$) on rising velocity of a large bubble in the thermosyphon are explicitly analyzed. The realm of a movable bubble and the critical value of $\alpha$ are iteratively pursued to interpret the region Figures-of-Break, rooted in the governing physics relations, according to the application of working fluid. Experimental results are compared with those of analysis and critical ranges for $\alpha$ and D$_{I}$ were ascertained from comparisons.isons.

  • PDF

Numerical Simulation of Bubble-Free Surface Interaction (기포-자유표면 상호작용에 대한 수치적 고찰)

  • Yang Chan-Kyu;Kim Hyeon-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.48-57
    • /
    • 1999
  • This paper deals with the numerical simulation of the behavior of single bubble rising near the free surface. Volume fraction of fluid (VOF) method with continuum surface force (CSF) model, the well known method for two phase flow simulation is adopted. A bubble of spherical shape positioned beneath the free surface is assumed at the initial stage. The difference according to the fluid properties of surrounding medium is examined. Simulation results are depicted and explained with the time history of bubble shape, velocity field and vorticity distribution.

  • PDF

Analysis of Terminal Velocity, Drag Coefficient and Shape of Bubble Rising in High Viscous Fluid (고점도 유체 내에서 부양하는 거품의 종말속도, 항력계수, 형태 분석)

  • Kim, Jin Hyun;Kim, Jung Hyeun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.462-469
    • /
    • 2010
  • Gas-liquid 2 phase processes are usually used in chemical, biochemical, environmental engineering and food process. For optimizing these processes, understanding bubble's precise movement and shape are needed. Bubble's movement and shape are effected by liquid's properties-viscosity, surface tension and bubble's properties-size, velocity. This paper deals with experimental data of bubble's movement and shape in high viscous silicone oil. Also, drag coefficient and deformation factor given by other researcher's papers and books are used to predicting and comparing bubble's terminal velocity, drag coefficient, deformation factor and shape with experimental value. Experimental data show that bubble moves faster when it moves in lower viscous silicone oil and it's drag coefficient is bigger when it moves in high viscous silicone oil. Bubble's shape is close to sphere when moving in high viscous silicone. Formulas proposed by Batchelor expect most accurate prediction for bubble's velocity and drag coefficient. Bubble's 2D shape predicted by Batchelor's energy balance, drag coefficient and deformation factor show excellent agreement with experimental bubble's 2D shape.

Comparative Study of Mass Transfer and Bubble Hydrodynamic Parameters in Bubble Column Reactor: Physical Configurations and Operating Conditions

  • Sastaravet, Prajak;Chuenchaem, Chomthisa;Thaphet, Nawaporn;Chawaloesphonsiya, Nattawin;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, effects of physical configurations and operating conditions on bubble column performance were analyzed in terms of bubble hydrodynamic and mass transfer parameters. Bubble column with 3 different dimensions and 7 gas diffusers (single / multiple orifice and rigid / flexible orifice) were applied. High speed camera and image analysis program were used for analyzing the bubble hydrodynamic parameters. The local liquid-side mass transfer coefficient ($k_L$) was estimated from the volumetric mass transfer coefficient ($k_La$) and the interfacial area (a), which was deduced from the bubble diameter ($D_B$) and the terminal bubble rising velocity ($U_B$). The result showed that the values of kLa and a increased with the superficial gas velocity (Vg) and the size of bubble column. Influences of gas diffuser physical property (orifice size, thickness and orifice number) can be proven on the generated bubble size and the mass transfer performance in bubble column. Concerning the variation of $k_L$ coefficients with bubble size, 3 zones (Zone A, B and C) can be observed. For Zone A and Zone C, a good agreement between the experimental and the predicted $K_L$ coefficients was obtained (average difference of ${\pm}15%$), whereas the inaccuracy result (of ${\pm}40%$) was found in Zone B. To enhance the high $k_La$ coefficient and absorption efficiency in bubble column, it was unnecessary to generate numerous fine bubbles at high superficial gas velocity since it causes high power consumption with the great decrease of $k_L$ coefficients.

Numerical Simulation of a Taylor Bubble Rising in a Vertical Tube (수직관에서 상승하는 Taylor 기포의 수치해석)

  • Son, Gi-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.373-380
    • /
    • 2001
  • In this study, a single Taylor bubble and a train of Taylor bubbles rising in a vertical tube were simulated numerically. A finite difference method was used to solve the mass and momentum equations for the liquid-gas region. The liquid-gas interface was captured by a level set function which is defined a signed distance from the interface. For a train of Taylor bubbles repeated periodically in space, the periodic conditions were imposed at the boundaries normal to the gravitational direction and the pressure boundary conditions were iteratively determined so that the computed flow rate should be equal to a given flow rate. Based on the numerical simulation, the calculated shape and rise velocity of a Taylor bubble were found to be in good agreement with the experimental data reported in the literature.