• 제목/요약/키워드: bubble nucleation

검색결과 40건 처리시간 0.023초

Michelson 간섭계를 응용한 미세 상변화 현상 계측 (Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry)

  • 김동식;박희권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF

Michelson 간섭계를 응용한 미세 상변화 현상 계측 (Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry)

  • 김동식;박희권
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1140-1147
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the microscale regime are essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing application, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse(λ=248nm, FWHM=24ns) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of 0.1㎛ and 1m/s, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

  • Murallidharan, Janani;Giustini, Giovanni;Sato, Yohei;Niceno, Bojan;Badalassi, Vittorio;Walker, Simon P.
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.859-869
    • /
    • 2016
  • Component-scale modeling of boiling is predominantly based on the Eulerian-Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

이론적 강제대류CHF 해석 모델의 연구 현황 및 성능 평가

  • 권혁성;전태현;홍성덕;황대현;박철
    • Nuclear Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.918-931
    • /
    • 1995
  • 임계열속을 예측하는 기존의 여러 방법중 임계열속 발생 역학구조에 근거한 이론적 접근 방법은 여러 유동형태(Flow pattern)별로 연구되고 있으며, 대표적으로 환상유동에서의 LFD(Liquid Film Dryout) 이론, 기포류에서의 BBLD(Bubble Boundary Layer Dryout) 흑은 LNID(Local Nucleation Initiated Dryout)이론 등이 제시되고 있다. 본 논문에서는 일반적으로 원자로 조건에 서 적용될 수 있는 LFD이론과 BBLD 이론에 대하여 대표적인 모델들을 소개하고 특성을 검토하였다. 특히 BBLD 이론중에서 기포군집 (Bubble coalescence) 모델과 층류막 드라이 아웃(Sublayer dryout) 모델에 대해서는 원형관에서의 임계열속 시험자료를 사용하여 각 모델의 예측 성능 및 특성을 평가하였다. 평가 결과, 기포군집 모형인 Weisman 모델의 예측성능이 가장 우수했으며 아울러 층류막 드라이아웃 모델인 Katto 모델과 Mudawwar 모델은 구성 인자중 기포군속도와 층류막 두께와의 관계가 보다 정확히 모형화되야 할 것으로 판단된다.

  • PDF

일정 벽면 온도 조건에서 이성분 혼합물의 핵비등시 벽면 열유속 거동 (Wall Heat Flux Behavior of Nucleate Pool Boiling Under a Constant Temperature Condition in a Binary Mixture System)

  • 배성원;이한춘;김무환
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1239-1246
    • /
    • 2000
  • The objective of this work is to measure space and time resolved wall heat fluxes during nucleate pool boiling of R113/R11 mixtures using a microscale heater array in conjunction with a high speed CCD. The microscale heater array is constructed using VLSI techniques, and consists of 96 serpentine platinum resistance heaters on a transparent quartz substrate. Electronic feedback circuits are used to keep the temperature of each heater at a specified temperature and the variation in heating power required to keep the temperature constant is measured. Heat flux data around an isolated bubble are obtained with triggered CCD images. CCD images are obtained at a rate of 1000frames/second. The heat transfer variation vs. time on the heaters directly around the nucleation site is plotted and correlated with images of the bubble obtainedby using the high speed CCD. For both of the mixture(R11/R113) and pure system(pure R11, pure R113), the wall heat fluxes are presented and compared to find out the qualitative difference between pure and binary mixture nucleate boiling.

극친수/극소수 표면에서 탄산용액의 기포 발생 촉진/억제 효과 분석 연구 (Effect of Promoting/Inhibiting Bubble Generation of Carbonate Solution on Superhydrophilic/Superhydrophobic Surfaces)

  • 이정원
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.77-83
    • /
    • 2022
  • When carbon dioxide in a liquid becomes supersaturated, carbon dioxide gas bubbles are generated in the liquid, and they ascend to the surface as they develop further. At this time, the inner wall of the cup with carbon gas attached is known as the entrapped gas cavity (EGS); once an EGS is established, it does not disappear and will continuously create carbon bubbles. This bubbling phenomenon can be activated or suppressed by changing the properties of the solid surface in contact with the carbonated liquid. In this study, the foaming of carbonated liquid is promoted or suppressed by modifying the wettability of the surface. A micro/nano surface structure is formed on the surface of an aluminum cup to produce a superhydrophilic surface, and a superhydrophobic surface similar to a lotus leaf is synthesized via fluorination. Experiment results show that the amount of carbon dioxide bubble generated differs significantly in the first few seconds depending on the surface, and that the amount of gas generated after it enters the stabilization period is the same regardless of the wettability of the cup surface.

피복된 전열면에서의 비등특성(대기압 이하의 압력에서) (Behavior of boiling heat transfer at coated heating surface(In the range of subatmosptheric pressure))

  • 문대영;오수철;임장순
    • 대한설비공학회지:설비저널
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 1977
  • This paper describes an experimental investigation which has been carried out with distilled water with the range of heat flux and pressure covering 7,400-28,000kcal/$m^2/h$ and 0.42-1.0332kg/$cm^{2}abs$, respectively. In this experiment, Nickel coated mirror surface heater of 5 cm O.D. was used as a heating source. The conclusions summerized as follows;1. The useful correlation of the test data for the heat transfer coefficient is presented as a function of the pressure. $$a/a_{s}=c{\times}p\;0.18$$ where a is the heat transfer coefficient and $a_s$ is the heat transfer coefficient at atmospheric pressure and p is the pressure, C is constant. 2. The bubble diameter near the heating surface and rising velocity increased with the heat flux. 3. A decrease in pressure results in the decrease of the number of nucleation sites and the increase of the bubble volume. 4. Bubble rising velocity differences are incrased maximumly up to $200\%$ of that at atmopheric pressure.

  • PDF

새로운 기포동력 마이크로펌프 제작 및 실험 (Novel Fabrication and Testing of a Bubble-Powered Micropump)

  • 정정열;곽호영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1196-1200
    • /
    • 2004
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. In this study, a bubble-powered micropump was fabricated and tested. The micropump consists of two-parallel micro line heaters, a pair of nozzle-diffuser flow controller and a 1 mm in diameter, 400 ${\mu}m$ in depth pumping chamber. The two-parallel micro line heaters with 20 ${\mu}m-width$ and 200 ${\mu}m-length$ were fabricated to be embedded in the silicon dioxide layer of a wafer which serves as a base plate for the micropump. The pumping chamber, the pair of nozzle-diffuser unit and microchannels including the liquid inlet and outlet port were fabricated by etching through another silicon wafer. A glass wafer (thickness of $525{\pm}15$ ${\mu}m$) having two holes of inlet and outlet ports of liquid serve as upper plate of the pump. Finally the silicon wafer of the base plate, the silicon wafer of pumping chamber and the glass wafer were aligned and bonded (Si-Si bonding and anodic bonding). A sequential photograph of bubble nucleation, growth and collapse was visualized by CCD camera. Clearly liquid flow through the nozzle during the period of bubble growth and slight back flow of liquid at the end of collapsing period can be seen. The mass flow rate was found to be dependent on the duty ratio and the operation frequency. As duty ratio increases, flow rate decreases gradually when the duty ratio exceeds 60%. Also as the operation frequency increases, the flow rate of the micropump decreases slightly.

  • PDF

단일기포 핵비등 시 미세액막층 구조에 대한 실험적 연구 (Experimental Study on Geometry of a Microlayer During Single-Bubble Nucleate Boiling)

  • 정승혁;정샛별;김형대
    • 대한기계학회논문집B
    • /
    • 제39권6호
    • /
    • pp.519-526
    • /
    • 2015
  • 본 연구에서는 핵비등 시 미세액막층의 증발에 의한 열유속과 열전달률 계산을 위한 simple microlayer model 의 물리적 변수들을 측정하기 위하여 미세액막층의 형상을 실험적으로 조사하였다. 레이저를 이용한 전반사 및 간섭 기법을 이용하여 simple microlayer model 을 구성하는 인자들인 미세액막층의 초기 두께 및 수평 이동속도를 측정하였다. 대기압 포화상태의 물을 이용하여 수평 벽면에서 단일기포 핵비등 실험을 수행하였고, 평균 열유속 $200kW/m^2$ 조건에서 동일한 위치에서 발생하는 기포들의 미세액막층의 구조적 특성을 분석하였다. 본 연구의 범위에서 측정한 미세액막층의 최대 초기 두께는 $5.4{\mu}m$ 이었으며, 증발에 의한 미세액막층의 수평 이동속도는 0.12 m/s 이었다.

저압에서의 과냉각 비등 현상에 대한 CFD의 유효성 검토 (CFD validation for subcooled boiling under low pressure)

  • 최용석;김유택;임태우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.275-281
    • /
    • 2016
  • 본 연구에서는 전산유체역학(CFD)을 이용하여 저압에서의 과냉각 비등 현상에 대한 수치해석적 연구를 수행하였다. 과냉각 비등 현상을 시뮬레이션하기 위해서 벽비등 모델을 사용하였으며, 벽비등 모델은 기포 이탈 직경, 핵 사이트 밀도 그리고 기포 이탈 빈도로 구성된 하위모델을 필요로 한다. 전산유체역학 코드 CFX는 실험 자료에 근거한 기본 모델을 제공한다. 하지만 이러한 모델은 대부분 고압조건에서 개발되었기 때문에 저압조건에서는 잘 맞지 않는 것으로 보인다. 따라서 본 연구에서는 저압조건에서 과냉각 비등 현상에 대해서 CFD의 유효성을 검토하였다. 수치해석적 결과는 기존의 실험 결과와 비교하였다. 수치해석은 질량유속 $250{\sim}750kg/m^2s$, 열유속 $0.37{\sim}0.77MW/m^2$ 그리고 출구압력 0.11 MPa범위에서 수행되었다. 저압조건에서 개발된 상관식을 적용함으로써 수치해석의 정확성을 높일 수 있었다.