• Title/Summary/Keyword: bubble

Search Result 1,831, Processing Time 0.025 seconds

The Effect of Heat Transfer from the Bubble Growing on the $B\dot{e}nard$ Convection Flow in a Square Cavity ($B\dot{e}nard$ 대류가 형성된 사각공동내의 상단 평판에서 기포의 성장이 열전달에 미치는 영향)

  • Eom, Yong-Kyoon;Kwon, Seung-Hye;Kwon, Gi-Han
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.211-216
    • /
    • 2001
  • Flow motion and variation of thermal field around a bubble which attached at the upper cooled solid wall in a $B\dot{e}nard$ convection flow is studied experimentally using thermo-sensitive liquid-crystal tracers and image processing for flow visualization and analysis. The air is injected gradually by $0.1m\ell$ to make the bubble. As the growing of the bubble in a $B\dot{e}nard$ convection flow, the variation of temperature field and surface tension along the bubble, which in turn cause to change the thermal field patterns and the flow direction and patterns. 6 cells flow pattern is transformed into diverse flow pattern. At the large size of a bubble, it's only conduction mechanism under the region of the bubble because of low Ra number 1137, but the convection flow both sides of the bubble leads to another convection flow in the bubble influence area which has been remained stable stagnation.

  • PDF

Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments (환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구)

  • Paik, Bu-Geun;Park, Il-Ryong;Kim, Ki-Sup;Lee, Kurnchul;Kim, Min-Jae;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.

Development of Gas Production Measurement System by Bubble Counting during Fermentation (기포계수식 발효가스 발생량 계측시스템의 개발)

  • Lee, Young-Jin;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.195-198
    • /
    • 1994
  • A bubble counter was designed and fabricated for the measurement of gas production rate on the basis of number of bubbles produced from yeast fermentor. The sensor was consisted of bubble forming device and electronic signal processing circuitry. The bubble forming device was built with bubble collector and liquid cell to form uniform size of bubble. Bubbles were counted by pulses formed by photo-interrupter circuitry having 8-bit binary latch counter. The gas production rate curves on the basis of bubble counted showed a good agreement to that of growth curves obtained by the optical measurement method. The sensor was succesfully applied to monitoring of the nutrient utilization test with glucose and galactose media.

  • PDF

Heat Transfer Characteristics under Saturated Nucleate Pool Boiling for Various Heating Surface Angles using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구)

  • Kim, Jeong-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2009
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R11 and R113 for various surface angles under saturated pool condition. A circular heater of 1 mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of surface angles on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, sliding velocity, bubble shape and advancing and receding contact angles. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

A Study on the Bubble Deformation and Departure Under DC Electric Field (직류전기장에 의한 기포의 변형과 이탈에 관한 연구)

  • 권영철;김무환;강인석;김석준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1518-1528
    • /
    • 1995
  • The deformation and departure processes of a bubble attached to the wall are studied experimentally and numerically to understand the phenomena of the nucleate boiling heat transfer enhancement under DC electric field. An air-bubble is injected in a dielectric liquid with different electric fields generated by changing three types of electrode system (Type 1,2 and 3) in the bubble generator. Experimental variables are the electric field strength and the distance and the shape of the electrodes under DC electric field. From experimental results, it is observed that the bubble under Dc electric field is elongated in the same direction as the electric field and the contact angle increases. For the parallel plate electrode which generates a uniform electric field, bubble departure volume doesn't seem to decrease within our experimental range. However, when a needle is raised a few millimeters from the lower electrode to make a nonuniform electric field around the needle, bubble departure volume decreases continuously with the increase of an applied voltage. The reduction effect of bubble departure volume is the most effective under a strong nonuniform electric field generated with Type 3. As the nonuniformity of the electric field due to the shape of a electrode increases, the terminal velocity and the acceleration of a bubble increase largely. For the comparison with visualization results, the deformation of a bubble attached to the electrode is carried out by a numerical method. Numerical results show good agreement qualitatively with experimental results.

Effects of Various Bioreactors on Growth and Ginsenoside Accumulation in Ginseng Adventitious Root Cultures(Panax ginseng C.A. Meyer) (다양한 생물반응기 형태가 인삼(Panax ginseng C.A. Meyer) 부정근의 생장과 Ginsenoside 생산에 미치는 영향)

  • Kim, Yun-Soo;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.249-253
    • /
    • 2004
  • The type of air lift bioreactor affected the root growth in ginseng adventitious root cultures. Among bioreactors used in this experiment, bulb type bubble bioreactor (BU) was the best to increase root growth (41.92 g dry weight). The kLa value representing the oxygen transfer capacity from medium to explants (6.98 h$^{-1}$ ) in BU with 5 cm bubble column was higher than other bioreactors. On the other hand, cylindric tube bioreactor (CT) without bubble column resulted in minimum root growth (38.55 g dry weight) and kLa value (5.25 h$^{-1}$ ). Furthermore, the root growth (50.30 g dry weight) in BU with 10 cm bubble column more increased than 5 cm bubble column. However, the kLa value do not affected the secondary metabolite such as ginsenosides. These results show that the bubble column in air lift bioreactor increase kLa value and increased kLa value stimulate the growth of ginseng adventitious roots.

Axial and Radial Distributions of Bubble Holdup in a Slurry Bubble Column with Pilot Plant Scale (파일럿규모 슬러리 기포탑에서 기포체류량의 축방향, 반경방향 분포)

  • Lim, Dae-Ho;Jang, Ji-Hwa;Kang, Yong;Jun, Ki-Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.200-205
    • /
    • 2011
  • Axial and radial distributions of bubble holdup were investigated in a slurry bubble column with pilot plant scale(D=1.0 m). Effects of gas velocity, surface tension of continuous liquid medium and solid fraction in the slurry phase on the axial and radial distributions of bubble holdup were examined. The bubble holdup decreased with increasing radial dimensionless distance from the center of the column, while it increased with increasing dimensionless distance in the axial direction from the distributor, in all the cases studied. The radial non-uniformity of bubble holdup increased with increasing gas velocity but decreasing surface tension of liquid medium, while it was not dependent upon the solid fraction in the slurry phase. The axial non-uniformity of bubble holdup increased with increasing gas velocity, but it does not change considerably with variations of liquid surface tension or solid fraction in the slurry phase . The axial and radial distributions of bubble holdup were well correlated in terms of operating variables within this experimental conditions.

Study on the Single Bubble Growth During Nucleate Boiling at Saturated Pool (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim Jeongbae;Lee Han Choon;Oh Byung Do;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.169-179
    • /
    • 2005
  • Nucleate boiling experiments on heating surface of constant wall temperature were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition of heating surface and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous experimental results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later (thermal) respectively. The comparisons showed good agreement in the initial and thermal growth regions. In the initial growth region including surface tension controlled, transition and inertia controlled regions as divided by Robinson and Judd, the bubble growth rate showed that the bubble radius was proportional to $t^{2/3}$ regardless of working fluids and heating conditions. And in the thermal growth region as also called asymptotic region, the bubble showed a growth rate that was proportional to $t^{1/5}$, also. Those growth rates were slower than the growth rates proposed in previous analytical analyses. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool condition. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

An Adaptive Analysis in the Element-free Galerkin Method Using Bubble Meshing Technique (Bubble Mesh기법을 이용한 적응적 EFG해석)

  • 정흥진;이계희;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2002
  • In this study an adaptive node generation procedure in the Element-free Galerkin (EFG) method using bubble-meshing technique is Proposed. Since we construct the initial configuration of nodes by subdivision of background cell, abrupt changes of inter-nodal distance between higher and lower error regions are unavoidable. This unpreferable nodal spacing induces additional errors. To obtain the smooth nodal configuration the nodal configurations are regenerated by bubble-meshing technique. This bubble meshing technique was originally developed to generate a set of well-shaped triangles and tetrahedra. In odder to evaluate the effect of abrupt changes of nodal spacing, one-dimensional problems with various nodal configurations mere investigated. To demonstrate the performance of proposed scheme, the sequences of making optimal nodal configuration with bubble meshing technique are investigated for several problems.

Ultrasonic Cavitation Effect Observation Using Bubble Cloud Image Analysis (기포군 영상분석을 통한 초음파 캐비테이션 현상의 변화 관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Kim, Jin-Su;Kang, Jung-Hoon;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.124-130
    • /
    • 2011
  • In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.