• Title/Summary/Keyword: brushless permanent magnet motor

Search Result 160, Processing Time 0.024 seconds

Design and Analysis of Characteristics of Interior Permanent Magnet BLDC Motor That Consider Shape-Ratio of Permanent Magnet (영구자석 형상비를 고려한 영구자석 매입형 BLDC 전동기 설계 및 특성해석)

  • Yun Keun-Young;Rhyu Se-Hyun;Yang Byoung-Yull;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Now a day, owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) BLOC with high efficiency and high power in electric motion vehicle is increasing. IPM BLDC motor has permanent magnets in the rotor. Because it has two different flux paths, magnetic reluctance differences are generated in d-axis and q-axis. As the result of the inductance differences that are generated by the saliency(magnetic reluctance differences) in the rotor, the motor has structure advantage that has the additional reluctance torque except a magnet torque and because magnet is situated inside the rotor, the mechanical structure is strong. Therefore IPM BLDC motor makes possible to have high speed and high power. This paper presents a design and characteristics analysis of IPM BLDC motor for electric vehicle. To design IPM BLDC motor, surface mounted permanent magnet(SPM) BLDC motor is used as the initial design model. According to the shape-ratio() of permanent magnet, the characteristic of IPM BLDC motor is analyzed by Finite element method (FEM). Characteristics analysis results of the designed motor are compared with the experimental results.

Field Weakening Operation of a High Torque Density Five Phase Permanent Magnet Motor Drive (고밀도 토크를 가지는 5상 영구자석형 전동기의 약계자 제어)

  • Kim, Nam-Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.318-323
    • /
    • 2007
  • This paper investigates the field weakening operation of a five-phase permanent magnet motor. The proposed motor has concentrated windings such that the produced back-EMF is almost trapezoidal and is supplied with the combined sinusoidal plus third harmonic of currents to produce trapezoidal current. Therefore this motor, while generating the same average torque as an equivalent permanent magnet brushless dc motor, overcomes its disadvantages. It is shown that torque producing and flux producing components of current for this motor can be decoupled by using multiple reference frame transformation. Therefore, Vector control is easily applicable to the motor. This motor has benefits such as high torque density of a BLDC motor below the rated speed and controllability of PMSM above the rated speed and during the field weakening region and simulation and experimental results are provided to prove the validity of the superior performance of this drive.

Permanent Magnet Optimization for Reduction of Cogging Torque of BLDC Motor using Response Surface Methodology (반응표면법을 이용한 코깅 토크 저감을 위한 BLDC 모터의 자석 최적설계)

  • Lee, Jang-Won;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.202-205
    • /
    • 2008
  • This paper presents an optimization of permanent magnet (PM) in a brushless dc (BLDC) motor using the response surface methodology (RSM). Size and angle of the PM are optimized to minimize the cogging torque, while reducing the magnitude of harmonic at a dominant frequency and maintaining the operating torque. A fitted RS model is constructed by verifying the high reliability of the total variation and the variation of estimated error. The optimized design is validated by carrying out the reanalysis and comparing to the initial model using the nonlinear transient finite element analysis.

  • PDF

Permanent Magnet Brushless AC Motor for High Speed (초고속용 영구자석형 브러시레스 AC 모터의 자계 및 유기전압 특성)

  • Jang, S.M.;Yang, H.S.;Jeong, S.S.;Rhu, D.W.;Choi, S.K.;Lim, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.40-42
    • /
    • 1999
  • High-speed brushless permanent magnet machines are good for compressor and aerospace applications, etc, since they are conductive to high efficiency, high power density, small size and low weight. This paper describes a diametrically magnetized PM motor with the rating of 4.3kW and 50000 rpm fur high-speed drive applications. To bear strong stress from high speed, rotor was designed cylindrical structure, was magnetized diametrically permanent magnet. The performance characteristic of motor was evaluated by means of FEA(Finite Element Analysis), no-load test And then, in order to find back-EMF constant, used FEA, search coil.

  • PDF

Position Control of Brushless DC moror by Field Oriented Control (자속 기준 제어에 의한 브러쉬 없는 직류전동기의 위치제어)

  • 조관열;신휘범;한재원;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.9
    • /
    • pp.600-608
    • /
    • 1988
  • Although the structure of brushless dc motor is similar to that of a Permanent magnet synchronous motor, its torque-speed characteristcis are the same as those of a permanent magmet dc motor. The brushless dc motor drive systemcomposed of power converter including inverter, rotor positioning sensor and controller has been investigated for the purpose of position control when the motor is fed by a current controlled voltage source inverter. The equivalent transformation of a brushless dc motor into an separately exited dc motor has been possible with the vector control (field oriented control) technique. It is shown in this paper that the position control of a brushless dc mitor can be done fairly accurately only using q-axis current.

  • PDF

Development of a Novel Direct-Drive Tubular Linear Brushless Permanent-Magnet Motor

  • Kim, Won-jong;Bryan C. Murphy
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This paper presents a novel design for a tubular linear brushless permanent-magnet motor. In this design, the magnets in the moving part are oriented in an NS-NS―SN-SN fashion which leads to higher magnetic force near the like-pole region. An analytical methodology to calculate the motor force and to size the actuator was developed. The linear motor is operated in conjunction with a position sensor, three power amplifiers, and a controller to form a complete solution for controlled precision actuation. Real-time digital controllers enhanced the dynamic performance of the motor, and gain scheduling reduced the effects of a nonlinear dead band. In its current state, the motor has a rise time of 30 ms, a settling time of 60 ms, and 25% overshoot to a 5-mm step command. The motor has a maximum speed of 1.5 m/s and acceleration up to 10 g. It has a 10-cm travel range and 26-N maximum pull-out force. The compact size of the motor suggests it could be used in robotic applications requiring moderate force and precision, such as robotic-gripper positioning or actuation. The moving part of the motor can extend significantly beyond its fixed support base. This reaching ability makes it useful in applications requiring a small, direct-drive actuator, which is required to extend into a spatially constrained environment.

A Novel Cogging Torque Reduction Method for Single-Phase Brushless DC Motor

  • Park, Young-Un;Cho, Ju-Hee;Rhyu, Se-Hyun;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • Single-phase, brushless DC (BLDC) motors have unequal air-gaps to eliminate the dead-point where the developed torque is zero. Unfortunately, these unequal air-gaps can deteriorate the motor characteristics in the cogging torque. This paper proposes a novel design for a single-phase BLDC motor with an asymmetric notch to solve this problem. In the design method, the asymmetric notches were placed on the stator pole face, which affects the change in permanent magnet shape or the residual flux density of the permanent magnet. Parametric analysis was performed to determine the optimal size and position of the asymmetric notch to reduce the cogging torque. Finite element analysis (FEA) was used to calculate the cogging torque. A more than 28% lower cogging torque compared to the initial model with no notch was achieved.

Modeling and Simulation of Interior Permanent - Magnet BLDC Motor Drive (영구자석 매입형 BLDC 모터 제어기의 모델링 및 시뮬레이션)

  • 이동명;안준호;염관호;조관열;김학원
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.332-336
    • /
    • 1998
  • Recently, the BLDC(Brushless DC) motor has been increasingly applied to home appliance and the study of BLDC motor drive is extensively processing, so it is necessary to investigate the characteristic of the BLDC motor drive. In this paper, we proposed the modeling of interior permanent - magnet BLDC motor drive. The state model of motor and the model of inverter using pulse width modulation are included. The modeling is verified by the experimental results.

  • PDF

The Design of High-power BLDC Motor with Maximum Torque at Low Speed for Ship Propulsion (선박 추진 장치를 위한 저속영역에서 최대토크를 가지는 고출력 BLDC 모터의 설계)

  • Cho, Seung-Hyun;Bin, Jae-Gu;Cho, Soo-Eok;Choi, Chul;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, development of rare earth permanent magnet with the high remanence, high coercivity allows the design of brushless motors with very high efficiency over a wide speed range. Cogging torque is produced in a permanent magnet by magnetic attraction between the rotor mounted permanent magnet and the stator teeth. It is an undesired effect that contributes to output ripple, vibration, and noise of machine. This cogging torque can be reduced by variation of magnet arc length, airgap length, magnet thickness, shifting the magnetic pole and varying the radial shoe depth and etc. In this paper, some airgap length and magnet arc that reduce cogging torque are found by finite element method(FEM) and Maxwell stress tensor method. The SPM(Surface Permanent Magnet) type of high-power Brushless DC (BLDC) motor is optimized as a sample model.

Development of a Sensorless Drive for Interior Permanent Magnet Brushless DC Motors (영구자석 매입형 브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • 여형기;홍창석;이광운;박정배;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.44-50
    • /
    • 1997
  • This paper describes an indirect sensing method for the rotor flux position of interior permanent magnet (IPM) brushless DC motors. The phase inductances of an IPM motor vary appreciably according to the rotor position. The waveform characteristics of the terminal voltage of IPM brushless DC motors is analysed and a simple and practical method for indirect sensing of the rotor position is proposed. A compact and economical sensorless drive is implemented and tested using a 87c196mc 16-bit one-chip microprocessor. The experimental results show the validity of the proposed method. The drive is applied to drive a compressor of air-conditioner and works well from 1,200 to 6,600 [rpm].

  • PDF