• Title/Summary/Keyword: brushless permanent magnet motor

Search Result 160, Processing Time 0.023 seconds

Thermal Analysis of Interior Permanent-Magnet Synchronous Motor by Electromagnetic Field-Thermal Linked Analysis

  • Lee, Sang-Taek;Kim, Hee-Jun;Cho, Ju-Hee;Joo, Dae-Suk;Kim, Dae-Kyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.905-910
    • /
    • 2012
  • This paper reports an investigation of pulse width modulation (PWM) techniques for twophase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electricaldegree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

Design and Drive Characteristics of BLDC Motor Control System for Tread Mill Application (Tread Mill 구동용 BLDC 전동기 제어시스템 설계 및 운전특성)

  • 안진우;이동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • Brushless D.C. Motor is widely used for industrial application because of high efficiency and high power density. Especially, in home appliance, BLDCM is very useful due to high control performance and low acoustic noise. In this paper, BLDCM and its controller are designed and developed for tread mill application. With the restricted stator structure, permanent magnet rotor is designed for manufacturing and cost effectiveness using CAD and FEM analysis. A ferrite magnetic material is used as a rotor magnet for the cost and temperature advantages. For a stable operation of tread mill, over current and temperature can be detected and protected. The designed BLDCM and its controller was verified by the experimental results.

The Rotor Barrier Design of the BLDC Motor Consider that Irreversible Demagnetization of Permanent Magnets (영구자석의 불가역 감자 현상을 고려한 BLDC 전동기의 회전자 자속 장벽 설계)

  • Kim, Cheol-Min;Cho, Gyu-Won;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • Generally, the usage motor in the vehicle is exposed to highly ambient temperature and large vibration according to repeatedly starting and stopping during very short time. So, in this paper, the rotor shape design was performed to improve demagnetization endurance by considering starting current of Brushless DC Motor (BLDCM) through Finite Element Method(FEM). As a result, the end of Permanent Magnet (PM) in the basic model was occurring a partial irreversible demagnetization by starting current. To solve this problem, the installing flux barrier was limited to flux line on the core. Accordingly, demagnetization endurance and operating characteristics were improved.

A Study on the Characteristic Analysis of Brushless DC Motor Using FEM (유한요소법을 이용한 브러시레스 DC 모터의 특성 해석에 관한 연구)

  • Cheong, Shin-Young;Song, Yu-Seok;Lee, Ju;Jang, Seok-Joong;Park, Geon-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.920-922
    • /
    • 2002
  • This paper investigates the cogging torque reduction in a brushless DC(BLDC) motor having an inner-rotor with surface-mounted segment-type permanent magnets. The kind of magnets for the BLDC motor could have different waveforms of magnetization such as square, trapezoidal and sinusoidal form. This paper discusses the effect of the unsymmetrical magnetization distribution in the segment-type permanent magnet, which is able to obtain through a segment structure that the number of poles per segments is 2 ($N_p/N_s$), on the cogging torque and EMF waveform. Where the existing magnetizer fixture for the square-type magnetization is used to magnetize the magnets in two segment structures of $N_p/N_s$ = 1 and 2. The effectiveness of the proposed designs had been confirmed by comparing cogging torque, and EMF waveform between conventional and new models which are analyzed by Finite Element Method (FEM).

  • PDF

Thust Ripples Reduction in the Moving Magnet Type LDM Using FEM & Phase Control (유한요소법과 위상제어를 이용한 선형직류전동기의 추력리플 저감에 관한 연구)

  • Choi, Jae-Hak;Min, Byoung-Wook;Lee, Ju;Im, Tae-Bin;Sung, Ha-Gyeong;Kim, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.9-11
    • /
    • 1999
  • A brushless and slotless DC linear motor(LDM)employing a movable set of neodymium-iron-boron type of magnets has high performances in advantages of large thrust per weights and accurate position control. But the Moving Magnet LDM produces thrust ripples owing to mainly end-effects, shape and magnetization of permanent magnets and so on. This paper represents the improvements of thrust ripples using the finite elements methods and phase control topology.

  • PDF

Design of Brushless Permanent Machine with Skewed Stator for Electrical Power Steering System (전동 조향 장치용 브러쉬리스 영구자석 전동기의 스테이터 스큐 설계)

  • Lee, Choong-Sung;Jung, Kyung-Tae;Hong, Jung-Pyo;Kim, Hae-Joong;Kim, Young-Kyun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.189-197
    • /
    • 2015
  • As enforced the regulation of fuel efficiency, the electrification of automotive components in internal combustion vehicle has been applied instead of hydraulic pressure. A typical example of such parts is the EPS (electric power steering), and it is applied to most automotive at present. In electric power steering system, the core component is motor. The reduction of cogging torque and torque ripple is required to improve steering feeling and reduce NVH (Noise Vibration Harshness) in EPS. Generally the skewed design of stator or rotor is applied in order to reduce cogging torque and torque ripple. This paper propose the design and analysis methodology of Brusheless PMSM (Permanent Magnet Synchronous Motor) which is applied to skewed stator. The proposed methodology is as follows: First Intial Design PMSM with skewed stator for EPS, Second Optimal design using RSM (Response surface method), Third Performance Analysis such as Phase Back EMF, Inductance, Load torque using FEA (Finite Element Method). Finally, the reliability of proposed design methodology will be verified through the experiments of prototype sample.

A STUDY ON OPTIMAL DRIVING METHODS FOR IMPROVING TORQUB CHARACTERISTIC OF MINIATURE BRUSHLESS DC MOTOR (소형브러시리스 DC 전동기의 토크 특성향상을 위한 최적 구동법에 관한 연구)

  • Park, G.T.;Song, M.H.;Kim, Y.I.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.16-20
    • /
    • 1989
  • In this paper, we describe the optimal driving method and magnetic flux distribution of permanent magnet which enhance torque characteristics in small-sized 3-phase brushless DC motors. The disadvantages of conventional $120^{\circ}$ constant current drive method are torque ripple, switching noise and spike voltage due to the inductance of stator coil. This shortcommings can be avoided by the switching slew-rate of driving current which is called linear voltage driving method. The aim of this study is to analyze linear voltage driving method quantatively and to determine optimal drive current waveform through computer simulation. The selection of commutation angle and slew rate of a new driving current at switching instants makes torque ripple index minimize and average torque maximize. And the validity of this new driving method was assured by Fourier analysis. Considering two dimensional nonlinear magnetic flux distribution on the permanent magnet, we suggest optimal flux distribution according to the presented driving method which improves torque characteristics.

  • PDF

Permanent Magnet Design for Reduction of Cogging Torque in Innner Rotor Brushless DC Motor (내전형 BLDC 전동기의 코깅 토크 저감을 위한 영구자석의 형상 설계)

  • Kim, S.C.;Joo, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.864-866
    • /
    • 2000
  • In the slotted motor, cogging torque is generated due to the interaction between the rotor magnets and the slots on the stator. It is well known that cogging torque produces vibration and noise which may be detrimental to the performance of position and speed control system. Hence, the prediction of cogging torque is very important at the design stage of BLDC motor. In this paper, permanent magnets with different arc an91e of inner and outer radius is proposed. The cogging torque of proposed model and conventional one is analyzed by 2-D FEM and compared.

  • PDF

Steady State Thermal Analysis of Brushless Motor for Rack Type Electric Power Steering Using Equivalent Thermal Resistance (등가 열저항을 이용한 R-EPS용 전동기의 정상상태 열해석)

  • Oh, Young-Jin;Ha, Kyung-Ho;Im, Yang-Su;Hong, Jung-Pyo;Jin, Jong-Hak;Jung, Dae-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.84-86
    • /
    • 2001
  • This paper deals with the characteristic and thermal analysis of brushless motors for Rack assist type Electric Power Steering(REPS). The performance of permanent magnet is under the influence of temperature. To predict the motor performance, the thermal analysis is necessary. The equivalent thermal network is composed of the thermal resistance and the temperature of major parts is calculated according to the operating condition.

  • PDF

Stress Analysis of Brushless Motor by Using Structural and Electromagnetic Finite Element Method (전자기 및 구조 유한요소법을 이용한 브러시레스 전동기의 응력 해석)

  • Ha, Kyung-Ho;Kang, Kyung-Ho;Hong, Jung-Pyo;Chang, Ki-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.617-619
    • /
    • 2000
  • This paper deals with the mechanical stress analysis caused by the electromagnetic radial force and the design considering the stress. The link in an Interior Permanent Magnet Brushless Motor(IPM) have influence on the mechanical and magnetic performance. Therefore, it is necessary to determine the appropriate link thickness. The optimal geometry link is designed by using the coupled with structural and electromagnetic Finite Element Method.

  • PDF