• 제목/요약/키워드: brown rot basidiomycete

검색결과 5건 처리시간 0.015초

Degradation of Crystalline Cellulose by the Brown-rot Basidiomycete Fomitopsis palustris

  • Yoon Jeong-Jun;Kim Young-Kyoon
    • Journal of Microbiology
    • /
    • 제43권6호
    • /
    • pp.487-492
    • /
    • 2005
  • This study demonstrated that the brown rot basidiomycete Fomitopsis palustris was able to degrade crystalline cellulose (Avicel). This fungus could also produce the three major cellulases (exoglucanases, endoglucanases, and $\beta-glucosidase$) when the cells were grown on $2.0\%$ Avicel. Avicel degraded by F. palustris showed a decrease in relative crystallinity from $83\%\;to\;78.5\%$ after 14 days of incubation. The characterization study indicated that optimum pH was 4.5 and optimum temperature was $70^{\circ}C$ for exoglucanase (cellobiohydrolase) activity. Hydrolysis of Avicel by the crude enzyme from F. palustris yielded 1.6 mg/ml of glucose after 43 h, which corresponded to a cellulose conversion degree of $3.2\%$. Therefore, this study revealed for the first time that the brown rot basidiomycete F. palustris produces cellulases capable of yielding soluble sugars from crystalline cellulose.

갈색부후균의 효소시스템을 이용한 목질계 바이오매스의 효소당화 (Enzymatic sccharification of lignocellulosic biomass by enzyme system of brown-rot fungi)

  • 윤정준;차창준;김영숙;김영균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.529-532
    • /
    • 2006
  • Recently the production of ethanol from lignocecllulosics has received much attention due to immense potential for conversion of renewable biometerials into biofuels and chemicals. Fomitopsis palustris causes a typycal brown-rot and is unusual in that it rapidly depolymerize the cellulose in wood without removing the surrounding lignin that normally prevents microbial attack. This study demonstrated that the brown rot basidiomycete F. palustris was able to degrade crystalline cellulose. This fungus could also produce the three major cellulases (BGL, EXG and EG) when the cells were grown on 2.0% Avicel. The fungus was able to degrade both the crystalline and amorphous forms of cellulose from woody biomasses. Moreover, we found that this fungus has the processive EG like CBH which are able to degrade the crystalline region of cellulose. To establish the cellulase system in relation with degradation of woody biomass, we performed that purification, characterization and molecular cloning of a BGL, EGs and GLA from F. palustris grown on Avicel.

  • PDF

The Brown-Rot Basidiomycete Fomitopsis palustris Has the Endo-Glucanases Capable of Degrading Microcrystalline Cellulose

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Son, Dong-Won;Kim, Young-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.800-805
    • /
    • 2007
  • Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose(Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein(EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein(EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was $100{\mu}g/ml$. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.

Functional Analysis of a Gene Encoding Endoglucanase that Belongs to Glycosyl Hydrolase Family 12 from the Brown-Rot Basidiomycete Fomitopsis palustris

  • Song, Byeong-Cheol;Kim, Ki-Yeon;Yoon, Jeong-Jun;Sim, Se-Hoon;Lee, Kang-Seok;Kim, Yeong-Suk;Kim, Young-Kyoon;Cha, Chang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.404-409
    • /
    • 2008
  • The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and ${\beta}$-glucosidases. A gene encoding endoglucanase, designated as cel12, was cloned from total RNA prepared from F. palustris grown at the expense of Avicel. The gene encoding Cel12 has an open reading frame of 732 bp, encoding a putative protein of 244 amino acid residues with a putative signal peptide residing at the first 18 amino acid residues of the N-terminus of the protein. Sequence analysis of Cel12 identified three consensus regions, which are highly conserved among fungal cellulases belonging to GH family 12. However, a cellulose-binding domain was not found in Cel12, like other GH family 12 fungal cellulases. Northern blot analysis showed a dramatic increase of cel12 mRNA levels in F. palustris cells cultivated on Avicel from the early to late stages of growth and the maintenance of a high level of expression in the late stage, suggesting that Cel12 takes a significant part in endoglucanase activity throughout the growth of F. palustris. Adventitious expression of cel12 in the yeast Pichia pastoris successfully produced the recombinant protein that exhibited endoglucanase activity with carboxymethyl cellulose, but not with crystalline cellulose, suggesting that the enzyme is not a processive endoglucanase unlike two other endoglucanases previously identified in F. palustris.

Analysis of Expressed Sequence Tags from the Wood-Decaying Fungus Fomitopsis palustris and Identification of Potential Genes Involved in the Decay Process

  • Karim, Nurul;Shibuya, Hajime;Kikuchi, Taisei
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권4호
    • /
    • pp.347-358
    • /
    • 2011
  • Fomitopsis palustris, a brown-rot basidiomycete, causes the most destructive type of decay in wooden structures. In spite of its great economic importance, very little information is available at the molecular level regarding its complex decay process. To address this, we generated over 3,000 expressed sequence tags (ESTs) from a cDNA library constructed from F. palustris. Clustering of 3,095 high-quality ESTs resulted in a set of 1,403 putative unigenes comprising 485 contigs and 918 singlets. Homology searches based on BlastX analysis revealed that 78% of the F. palustris unigenes had a significant match to proteins deposited in the nonredundant databases. A subset of F. palustris unigenes showed similarity to the carbohydrateactive enzymes (CAZymes), including a range of glycosyl hydrolase (GH) family proteins. Some of these CAZyme-encoded genes were previously undescribed for F. palustris but predicted to have potential roles in biodegradation of wood. Among them, we identified and characterized a gene (FpCel45A) encoding the GH family 45 endoglucanase. Moreover, we also provided functional classification of 473 (34%) of F. palustris unigenes using the Gene Ontology hierarchy. The annotated EST data sets and related analysis may be useful in providing an initial insight into the genetic background of F. palustris.