• Title/Summary/Keyword: brown proteins

Search Result 88, Processing Time 0.027 seconds

Inhibitory Effect of Chloroform Extract of Marine Algae Hizikia Fusifomis on Angiogenesis (Hizikia fusiformis 클로로포름 추출물의 in vitro 및 in vivo 혈관신생 억제 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Young Park;Ji-Hyeok Lee;Eui-Yeun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.399-407
    • /
    • 2024
  • Angiogenesis is the process by which new blood vessels form from existing blood vessels. This phenomenon occurs during growth, healing, and menstrual cycle changes. Angiogenesis is a complex and multifaceted process that is important for the continued growth of primary tumors, metastasis promotion, the support of metastatic tumors, and cancer progression. Impaired angiogenesis can lead to cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. Currently, there are only a handful of effective antiangiogenic drugs. Recent studies have shown that natural marine products exhibit antiangiogenic effects. In a previous study, we reported that the hexane extract of H. fusiformis (HFH) could inhibit the development of new blood vessels both in vitro and in vivo. The aim of this study was to describe the inhibitory effect of chloroform extracts of H. fusiformis on angiogenesis. To investigate how chloroform extract prevents blood vessel growth, we examined its effects on HUVEC, including cell migration, invasion, and tube formation. In a mouse Matrigel plug assay, H. fusiformis chloroform extract (HFC) also inhibited angiogenesis in vivo. Certain proteins associated with blood vessel growth were reduced after HFC treatment. These proteins include vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal transduction kinase, and serine/threonine kinase 1 (AKT). These studies have shown that the chloroform extract of H. fusiformis can inhibit blood vessel growth both in vitro and in vivo.

Molecular Cloning and Characterization of Bovine HMGA1 Gene

  • Yu, S.L.;Chung, H.J.;Sang, B.C.;Bhuiyan, M.S.A.;Yoon, D.;Kim, K.S.;Jeon, J.T.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1662-1669
    • /
    • 2007
  • The high mobility group AT-hook1 (HMGA1) proteins are known to be related to the regulation of gene transcription, replication and promotion of metastatic progression in cancer cells. The loss of expression by disrupting the HMGA1 gene affects insulin signaling and causes diabetes in the mouse. Previously identified single nucleotide polymorphism (SNP) of HMGA1 was significantly associated with fat deposition traits in the pig. In this study, we identified 3,935 bp nucleotide sequences from exon 5 to exon 8 of the bovine HMGA1 gene and its mRNA expression was observed by quantitative real-time PCR. Six single nucleotide polymorphisms in the bovine HMGA1 gene were detected and the allele frequencies of these SNPs were investigated using the PCR-RFLP method in nine cattle breeds including Limousin, Simmental, Brown Swiss, Hereford, Angus, Charolais, Hanwoo, Brahman and Red Chittagong cattle. The map location showed that the bovine HMGA1 gene was also closely located with a previously identified meat quality QTL region indicating this gene is the most likely positional candidate for meat quality traits in cattle.

Polymorphic Diversity of UBX Domain D from cDNA Isolated from Pectoral Muscle of Korean Native Chicken

  • Sun, Sang-Soo;Kamyab, Abdolreza;Firman, Jeff
    • Korean Journal of Poultry Science
    • /
    • v.38 no.3
    • /
    • pp.191-195
    • /
    • 2011
  • The objectives of this study are to identify specific functional genes which are related with growth and protein structure of the pectoral muscle of Korean native chicken. Pectoral muscle was isolated from three Korean native chickens (KNC, red brown, 12 months old, 2.41 ${\pm}$ 0.24 kg) and three Cornish chickens (16 month old, 2.76 ${\pm}$ 3.0 kg). The subtraction cDNA library was prepared in PCR4 Blunt-TOPO vector. The DNA sequence homology was compared with other breeds and species in GenBank. A clone NDS-81 was found to be unique for the DNA sequence homology with UBX family. Their partial sequence has high homology (98%) with chicken UBX domain D. Chicken UBX domain has chicken (93%), cattle (68%), dog (67%), mouse (64%) and, human (63%) nucleotide sequence homology. Several regions were mutated from T in chicken to C or G in the NDS-81 clone. The first site is LAD in chicken, but it was expressed as (L)RM in clone NDS-81. In this site, amino acids were changed from Ala to Arg, and from Asp to Met. The second site was changed from ER (Arg) in chicken to ED (Asp) in clone NDS-81. They are both containing functional side chains and play an important role in binding other proteins. Therefore, the clone NDS-81 could be a different candidate gene for the UBX family gene and could related with pectoral muscle structure of Korean native chicken.

Fucoidan Induces Apoptosis in A2058 Cells through ROS-exposed Activation of MAPKs Signaling Pathway

  • Ryu, Yea Seong;Hyun, Jin Won;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.191-199
    • /
    • 2020
  • Fucoidan, a natural component of brown seaweed, has various biological activities such as anti-cancer activity, anti-oxidant, and anti-inflammatory against various cancer cells. However, the fucoidan has been implicated in melanoma cells via apoptosis signaling pathway. Therefore, we investigated apoptosis with fucoidan in A2058 human melanoma cells with dose- and time-dependent manners. In our results, A2058 cells viability decreased at relatively short-time and low-concentration through fucoidan. This effects of fucoidan on A2058 cells appeared to be mediated by the induction of apoptosis, as manifested by morphological changes through DNA-binding dye Hoechst 33342 staining. When a dose of 80 ㎍/mL fucoidan was treated, the cells were observed: crescent or ring-like structure, chromatin condensation, and nuclear fragmentation. With the increase at 100 ㎍/mL fucoidan, the cell membrane is intact throughout the total process, including membrane blebbing and loss of membrane integrity as well as increase of sub-G1 DNA. Furthermore, to understand the exact mechanism of fucoidan-treated in A2058 cells, western blotting was performed to detect apoptosis-related protein expression. In this study, Bcl-2 family proteins can be regulated by fucoidan, suggesting that fucoidan-induced apoptosis is modulated by intrinsic pathway. Therefore, expression of Bcl-2 and Bax may result in altered permeability, activating caspase-3 and caspase-9. And the cleaved form of poly ADP-ribose polymerase was detected in fucoidan-treated A2058 cells. These results suggest that A2058 cells are highly sensitive to growth inhibition by fucoidan via apoptosis, as evidenced by activation of extracellular signal-regulated kinases/p38/Bcl-2 family signaling, as well as alteration in caspase-9 and caspase-3.

Identification of Prostate Cancer LncRNAs by RNA-Seq

  • Hu, Cheng-Cheng;Gan, Ping;Zhang, Rui-Ying;Xue, Jin-Xia;Ran, Long-Ke
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9439-9444
    • /
    • 2014
  • Purpose: To identify prostate cancer lncRNAs using a pipeline proposed in this study, which is applicable for the identification of lncRNAs that are differentially expressed in prostate cancer tissues but have a negligible potential to encode proteins. Materials and Methods: We used two publicly available RNA-Seq datasets from normal prostate tissue and prostate cancer. Putative lncRNAs were predicted using the biological technology, then specific lncRNAs of prostate cancer were found by differential expression analysis and co-expression network was constructed by the weighted gene co-expression network analysis. Results: A total of 1,080 lncRNA transcripts were obtained in the RNA-Seq datasets. Three genes (PCA3, C20orf166-AS1 and RP11-267A15.1) showed a significant differential expression in the prostate cancer tissues, and were thus identified as prostate cancer specific lncRNAs. Brown and black modules had significant negative and positive correlations with prostate cancer, respectively. Conclusions: The pipeline proposed in this study is useful for the prediction of prostate cancer specific lncRNAs. Three genes (PCA3, C20orf166-AS1, and RP11-267A15.1) were identified to have a significant differential expression in prostate cancer tissues. However, there have been no published studies to demonstrate the specificity of RP11-267A15.1 in prostate cancer tissues. Thus, the results of this study can provide a new theoretic insight into the identification of prostate cancer specific genes.

Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo

  • Lee, Ji-Hyeok;Ko, Ju-Young;Oh, Jae-Young;Kim, Eun-A;Kim, Chul-Young;Jeon, You-Jin
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.313-323
    • /
    • 2015
  • Lipid peroxidation means the oxidative degradation of lipids. The process from the cell membrane lipids in an organism is generated by free radicals, and result in cell damage. Phlorotannins, well-known marine brown algal polyphenols, have been utilized in functional food supplements as well as in medicine supplements to serve a variety of purposes. In this study, we assessed the potential anti-lipid peroxidation activity of phlorofucofuroeckol-A (PFF-A), one of the phlorotannins, isolated from Ecklonia cava by centrifugal partition chromatography in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated Vero cells and zebrafish system. PFF-A showed the strongest scavenging activity against alkyl radicals of all other reactive oxygen species (ROS) and exhibited a strong protective effect against ROS and a significantly strong inhibited of malondialdehyde in AAPH-stimulated Vero cells. The apoptotic bodies and pro-apoptotic proteins Bax and caspase-3, which were induced by AAPH, were strongly inhibited by PFF-A in a dose-dependent manner and expression of Bcl-xL, an anti-apoptotic protein, was induced. In the AAPH-stimulated zebrafish model, additionally PFF-A significantly inhibited ROS and cell death, as well as exhibited a strong protective effect against lipid peroxidation. Therefore, these results suggest that PFF-A has excellent protective effects against ROS and lipid peroxidation induced by AAPH in both an in vitro Vero cell model and an in vivo zebrafish model.

Extract of Saccharina japonica Induces Apoptosis companied by Cell Cycle Arrest and Endoplasmic Reticulum Stress in SK-Hep1 Human Hepatocellular Carcinoma Cells

  • Jung, Hyun Il;Jo, Mi Jeong;Kim, Hyung-Rak;Choi, Yung Hyun;Kim, Gun-Do
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.2993-2999
    • /
    • 2014
  • Saccharina japonica is a family member of Phaeophyceae (brown macro-alga) and extensively cultivated in China, Japan and Korea. Here, the potential anti-cancer effect of n-hexane fraction of S. japonica was evaluated in SK-Hep1 human hepatocellular carcinoma cells. The N-hexane fraction reduced cell viability and increased the numbers of apoptotic cells in a both dose- and time-dependent manner. Apoptosis was activated by both caspase-dependent and independent pathways. The caspase-dependent cell death pathway is mediated by cell surface death receptors and activated caspase-8 amplified the apoptotic signal either through direct activation of downstream caspase-3 or pro-apoptotic proteins (Bad, Bax and Bak) subsequently leading to the release of cytochrome c. On the other hand, caspase-independent apoptosis appeared mediated by disruption of mitochondrial membrane potential and translocation of AIF to the nucleus where they induced chromatin condensation and/or large-scale DNA fragmentation. In addition, the n-hexane fraction induced endoplasmic reticulum (ER)-stress and cell cycle arrest. The results suggested that potential anti-cancer effects of n-hexane extract from S. japonica on SK-Hep1 cells.

Mechanism of Inhibition of HepG2 Cell Proliferation by a Glycoprotein from Hizikia fusiformis (톳(Hizikia fusiformis) 당단백질에 의한 HepG2 세포 증식 억제기전)

  • Ryu, Jina;Hwang, Hye-Jung;Kim, In-Hye;Nam, Taek-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2012
  • Hizikia fusiformis, a brown alga that is widely consumed in Korea, Japan, and China, possesses a number of potentially beneficial compounds, including antioxidants and anticoagulants. However, the molecular mechanisms of H. fusiformis in hepatoma cells have not been elucidated. This study investigated the antiproliferative effect and mechanism of action of a glycoprotein from H. fusiformis (HFGP) in HepG2 human hepatoma cells. In an MTS assay, 25 ${\mu}g/mL$ HFGP inhibited the proliferation of HepG2 cells by $52.36{\pm}2.37%$. HFGP caused the dose-dependent growth inhibition of HepG2 cells by inducing apoptosis and a sub-G1 phase arrest. The antiproliferative activity of HFGP was confirmed based on the expression of several apoptosis-related proteins, which was assessed by Western blot analysis. The expressions of Fas, Fas-associated death domain protein, Bax, and Bad was significantly up-regulated in HFGP-treated cells, and HFGP induced the translocation of Bax to mitochondria and the release of cytochrome c into the cytosol. Therefore, HFGP might be useful in the treatment of liver cancer.

Effects of Buja${\cdot}$Padu${\cdot}$Daehwang${\cdot}$Seokgo Extract on UCPs Expression in Mice (부자${\cdot}$파두${\cdot}$대황${\cdot}$석고 추출물의 UCP 발현에 미치는 영향)

  • Kwon, Kang-Beom;Kim, Eun-Kyung;Kim, In-Seob;Hwang, Tae-Ok;Lee, Si-Woo;Lee, Su-Kyung;Choi, Jin-Young;Keum, Kyung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1407-1410
    • /
    • 2007
  • We designed to investigate the relationship the cold-hot theory of herbology and body temperature in experimental model. we prepared four kinds of oriental medicine, which consisted of two cold herbs, Daehwang and Seokgo, and two hot herbs, Buja and Padu. Decrease of body temperature by cold exposure for 12 hour was not inhibited by four herbs oral administration for two weeks. Thermogenesis in mammals is an essential physiological function to maintain the body temperature. Mitochondrial uncoupling proteins(UCPs), which have a potential to generate heat by uncoupling oxidative phosphorylation, apper to play a crucial role in thermogenesis. Therefore UCP is commonly recognized as a key molecule in metabolic thermogenesis and its dysfunction contributes to the development of obesity. In these experiments, Daehwang water extracts inhibited the UCP1 mRNA expression increase by cold exposure in brown adipose tissue. But other herbs did not significantly influence on UCPs mRNA expression in white adipose tissue and seleus muscle tissue. Based on this experiment, we will try to clarify the effects of Daehwang water extracts on UCP1 expression and function.

Identification of a Gene Involved in the Negative Regulation of Pyomelanin Production in Ralstonia solanacearum

  • Ahmad, Shabir;Lee, Seung Yeup;Khan, Raees;Kong, Hyun Gi;Son, Geun Ju;Roy, Nazish;Choi, Kihyuck;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1692-1700
    • /
    • 2017
  • Ralstonia solanacearum causes bacterial wilt in a wide variety of host plant species and produces a melanin-like blackish-brown pigment in stationary phase when grown in minimal medium supplemented with tyrosine. To study melanin production regulation in R. solanacearum, five mutants exhibiting overproduction of melanin-like pigments were selected from a transposon (Tn) insertion mutant library of R. solanacearum SL341. Most of the mutants, except one (SL341T), were not complemented by the original gene or overproduced melanins. SL341T showed Tn insertion in a gene containing a conserved domain of eukaryotic transcription factor. The gene was annotated as a hypothetical protein, given its weak similarity to any known proteins. Upon complementation with its original gene, the mutant strains reverted to their wild-type phenotype. SL341T produced 3-folds more melanin at 72 h post-incubation compared with wild-type SL341 when grown in minimal medium supplemented with tyrosine. The chemical analysis of SL341T cultural filtrate revealed the accumulation of a higher amount of homogentisate, a major precursor of pyomelanin, and a lower amount of dihydroxyphenylalanine, an intermediate of eumelanin, compared with SL341. The expression study showed a relatively higher expression of hppD (encoding hydroxyphenylpyruvate dioxygenase) and lower expression of hmgA (encoding homogentisate dioxygenase) and nagL (encoding maleylacetoacetate isomerase) in SL341T than in SL341. SL341 showed a significantly higher expression of tyrosinase gene compared with SL341T at 48 h post-incubation. These results indicated that R. solanacearum produced both pyomelanin and eumelanin, and the novel hypothetical protein is involved in the negative regulation of melanin production.