• Title/Summary/Keyword: bromodomain-containing protein 2

Search Result 2, Processing Time 0.017 seconds

Identification of a Bromodomain-containing Protein 2 (BRD2) Gene Polymorphic Variant and Its Effects on Pork Quality Traits in Berkshire Pigs

  • Lee, Dong Ju;Hwang, Jung Hye;Ha, Jeongim;Yu, Go Eun;Kwon, Seulgi;Park, Da Hye;Kang, Deok Gyeong;Kim, Tae Wan;Park, Hwa Chun;An, Sang Mi;Kim, Chul Wook
    • Food Science of Animal Resources
    • /
    • v.38 no.4
    • /
    • pp.703-710
    • /
    • 2018
  • Bromodomain-containing protein 2 (BRD2) is a nuclear serine/threonine kinase involved in transcriptional regulation. We investigated the expression and association of the BRD2 gene as a candidate gene for meat quality traits in Berkshire pigs. BRD2 mRNA was expressed at relatively high levels in muscle tissue. Statistical analysis revealed that the c.1709G>C polymorphism of the BRD2 gene was significantly associated with carcass weight, meat color ($a^*$, redness), protein content, cooking loss, water-holding capacity, carcass temperatures 4, 12 and 24 h postmortem, and the 24 h postmortem pH in 384 Berkshire pigs. Therefore, this polymorphism in the porcine BRD2 gene may be used as a candidate genetic marker to improve meat quality traits in pigs.

BRD7 Promoter Hypermethylation as an Indicator of Well Differentiated Oral Squamous Cell Carcinomas

  • Balasubramanian, Anandh;Subramaniam, Ramkumar;Narayanan, Vivek;Annamalai, Thangavelu;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1615-1619
    • /
    • 2015
  • Background: Promoter hypermethylation mediated gene silencing of tumor suppressor genes is considered as most frequent mechanism than genetic aberrations such as mutations in the development of cancers. BRD7 is a single bromodomain containing protein that functions as a subunit of SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well know tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. Loss of expression of BRD7 has been observed in breast cancers and nasopharyngeal carcinomas due to promoter hypermethylation. However, the genetic status of BRD7 in oral squamous cell carcinomas (OSCCs) is not known, although OSCC is one of the most common among all reported cancers in the Indian population. Hence, in the present study we investigated OSCC samples to determine the occurrence of hypermethylation in the promoter region of BRD7 and understand its prevalence. Materials and Methods: Genomic DNA extracted from biopsy tissues of twenty three oral squamous cell carcinomas were digested with methylation sensitive HpaII type2 restriction enzyme that recognizes and cuts unmethylated CCGG motifs. The digested DNA samples were amplified with primers flanking the CCGG motifs in promoter region of BRD7 gene. The PCR amplified products were analyzed by agarose gel electrophoresis along with undigested amplification control. Results: Methylation sensitive enzyme technique identified methylation of BRD7 promoter region seventeen out of twenty three (74%) well differentiated oral squamous cell carcinoma samples. Conclusions: The identification of BRD7 promoter hypermethylation in 74% of well differentiated oral squamous cell carcinomas indicates that the methylation dependent silencing of BRD7 gene is a frequent event in carcinogenesis. To the best of our knowledge, the present study is the first to report the occurrence of BRD7and its high prevalence in oral squamous cell carcinomas.