• Title/Summary/Keyword: brittle shear failure

Search Result 172, Processing Time 0.028 seconds

An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet (탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구)

  • 이현호;구은숙
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF

Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach

  • Wang, Shuhong;Tang, Chun'an;Jia, Peng
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.181-194
    • /
    • 2006
  • The masonry is a complex heterogeneous material and its shear deformation and fracture is associated with very complicated progressive failures in masonry structure, and is investigated in this paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations by other researchers. This finding indicates that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

Behavior of tunnel form buildings under quasi-static cyclic lateral loading

  • Yuksel, S. Bahadir;Kalkan, Erol
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.99-115
    • /
    • 2007
  • In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

Structural Behavior of Reinforced Concrete Short Columns by Pseudo-Dynamic Test (유사동적실험을 이용한 철근콘크리트 단주실험에 관한 연구)

  • Min, Kyung-Min;Kim, Yong-In;Lee, Kang-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.73-76
    • /
    • 2008
  • According to the survey of earthquake disaster, low-rise reinforced concrete building larger by the extent of damage and because of the underlying distribution of reinforced concrete structures more, it is very likely to be disasters. The purpose of this study is to discuss how strength and stiffness of each system in low-rise reinforced concrete buildings consisted of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system. Generally, if shear failure members including extremely brittle failure members are failed during an earthquake, the lateral-load resisting seismic capacities of RC buildings are lower rapidly, and if the seismic capacities of shear failure members were higher than that of flexural failure members, failures of shear failure members have influence on failures of the overall system. The result of this paper will provide pseudo-dynamic test of carried out to estimate the possibility of proposals.

  • PDF

Strengthening and Ductility Evaluation of Reinforced Concrete Beams Shear-Strengthened by Steel Plates and Glass Fiber Sheets (강판 및 유리섬유쉬트로 전단보강된 철근콘크리트 보의 보강 및 연성 평가)

  • 문상범;오성영;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.691-696
    • /
    • 2000
  • Shear strengthening method by steel plates and fiber reinforced polymer lamination has recently been favorably selected due to its efficiencies of duration and performance. Shear failure being brittle and difficult to predict, reinforced concrete structures must have sufficient capacity to absorb the energy for shear failure and to support temporarily the overload which may result due to the loss of shear capacity to the structure. These respects being considered, this research has carried out with the purpose of the experimental verification of the shear strengthening effect and ductility evaluation.

  • PDF

Analysis of colliding index on impact behavior of RC columns under repeated impact loading

  • Tantrapongsaton, Warakorn;Hansapinyo, Chayanon;Wongmatar, Piyapong;Limkatanyu, Suchart;Zhang, Hexin;Charatpangoon, Bhuddarak
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.19-32
    • /
    • 2022
  • This paper presents an investigation into the failure of RC columns under impact loadings. A numerical simulation of 19 identical RC columns subjected to single and repeated impact loadings was performed. A free-falling hammer was dropped at midspan with the same total kinetic energy input but varying mass and momentum. The specimens under the repeated impact test were struck two times at the same location. The colliding index, defined as the impact energy-momentum ratio, was proposed to explain the different impact responses under equal-energy impacts. The increase of colliding index from low to high indicates the transition of the impact response from static to dynamic and failure mode from flexure to shear. This phenomenon was more evident when the column had a greater axial load and was impacted with a high colliding index. The existence of the axial load had an inhibitory effect on the crack development and increased the shear resistance. The second impact changes the failure mode from flexural to brittle shear as found in the specimen with 20% axial load subjected to high a colliding index. Moreover, a deflection prediction equation based on the impact energy and force was limited to the low colliding index impact.

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube (강관구속 고강도 철근콘크리트 기둥의 내진성능)

  • 한병찬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

The Performance of Shear Strengthened Reinforced Concrete Columns with Carbon Fiber Sheets (탄소섬유시트로 전단 보강된 철근콘크리트 기둥의 성능 평가)

  • 강경원;하상수;나정민;이용택;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.733-736
    • /
    • 1999
  • R/C columns, one of the main structural members of reinforced concrete structures, usually sustain the axial forces of combined dead loads and live loads. When subjected to lateral loads, however, they are repeatedly subjected to bending moment, shearing forces and brittle failure such as shear failure can occur. This failure mode is not desirable and extra reinforcement is usually needed to induce a ductile failure. The design equation which is used to evaluate the maximum shear strength of a R/C column is still unsatisfactory. The objective of this study was, therefore, to evaluate the hysteretic strengthening effect and the maximum shear strength of R/C columns strengthened using carbon fibers on the seismic performance of the R/C columns under anti-symmetrical by acting moment. According to this study, it may be suggested that the shear of the strengthened R/C column were adequate to induce ductile failures.

  • PDF