• Title/Summary/Keyword: brittle collapse mechanism

Search Result 7, Processing Time 0.02 seconds

Pier Stiffness and Bridge Collapse Mechanism (교각 강성과 교량의 붕괴기구)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.187-192
    • /
    • 2016
  • While structures are designed within elastic range by other designs, plastic behavior of structures should be verified and controlled in order to prevent structural collapse by the earthquake resistant design. No Collapse Requirement for typical bridges is to avoid falling down of superstructure by way of plastic behavior of certain structural elements and to operate emergency vehicles after earthquake. Such plastic behavior is restricted to connections or pier columns and appropriate measures are required for each case. Earthquake Resistant Design part of Roadway Bridge Design Code provides design processes for Ductile Collapse Mechanism by forming plastic hinges at pier columns. Also for bridges with reinforced concrete piers ductility-based design processes are provided as an appendix constructing Brittle Collapse Mechanism with connection yielding. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and No Collapse Design procedure considering both Ductile and Brittle Collapse Mechanism is proposed together with revisions required for the Earthquake Resistant Design part.

A Study on the Safety of Lifting Cable for Construction of Coastal Structures (항만건설을 위한 케이슨 들고리의 안전성에 관한 연구)

  • Kwak, Kae Hwan;Jang, Ki Woong;Kim, Jong Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.85-99
    • /
    • 1998
  • This paper describes an experimental study to examine collapse causes of the lifting cable due to brittle failure of an fitting anchor under the lifting works. Also, in this study an collapse mechanism that was obtained from stress analysis was compared with an actual collapse procedure. Fractographical analysis as well as chemical component test, tension test and Charpy V-Notch impact test for the fractured steel members were carried out. And then, its results were compared with that of normal steel members. Circumferential surface flaws were developed at internal facets of the fitting anchor before tensile stress occurred. Hence, a higher stress than nominal stress was occurred at flaws by stress concentration at the crack tip. Also, stress intensity factor of members increased by crack size of the potential flaws. Because the stress intensity factor at the crack tip was greater than critical values(fracture toughness), brittle fracture occurred under the lifting works. It is judged that the main collapse of the lifting cable is due to brittle fracture of the fitting anchor.

  • PDF

Axial Collapse Characteristics of Aluminum CFRP Compound Square Members for Vehicle Structural Members (차체구조부재용 알루미늄 CFRP 혼성사각부재의 축 압궤 특성)

  • Lee, Kil-Sung;Cha, Cheon-Seok;Pyeon, Seok-Beom;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1329-1335
    • /
    • 2005
  • An aluminum or CFRP (Carbon Fiber ReinfDrced Plastics)is representative one of light-weight materials but its axial collapse mechanism is different from each other. The aluminum member absorbs energy by stable plastic deformation, while the CFRP member absorbs energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. In an attempt to achieve a synergy effect by combining the two members, aluminum CFRP compound square members were manufactured, which are composed of aluminum members wrapped with CFRP outside aluminum square members with different fiber orientation angle and thickness of CFRP, and axial collapse tests were performed fur the members. The axial collapse characteristics of the compound members were analyzed and compared with those of the respective aluminum members and CFRP members. Test results showed that the collapse of the aluminum CFRP compound member complemented unstable brittle failure of the CFRP member due to ductile characteristics of the inner aluminum member. The collapse modes were categorized into four modes under the iuluence of the fiber orientation angle and thickness of CFRP. The absorbed energy Per unit mass, which is in the light-weight aspect was higher in the aluminum CFRP compound member than that in the aluminum member and the CFRP member alone.

An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet (탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구)

  • 이현호;구은숙
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF

No Collapse Design for Typical Bridges (일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.163-172
    • /
    • 2014
  • The purpose of earthquake resistant design for typical bridges is the No Collapse Design and the Earthquake Resistant Design Part of Roadway Bridge Design Code provides a design process to construct the Ductile Failure Mechanism for the bridge structure. However, if it is not practical to provide the Ductile Failure Mechanism due to structure types or site conditions, the Brittle Failure Mechanism is an alternative way to get the No Collapse Design. As well as the existing design process constructing the Ductile Failure Mechanism, the Earthquake Resistant Design Part provides a ductility-based design process as an appendix, which is prepared for bridges with reinforced concrete piers. According to the new design process, designer determines a required response modification factor for substructure and transverse reinforcement for confinement therefrom. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected for which the existing as well as the ductility-based design processes are applied and different results from the two design processes are identified. Based on the results, an earthquake resistant design procedure is proposed in which designers should consider the two design processes.

Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight (경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성)

  • 이길성;차천석;정진오;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF