• Title/Summary/Keyword: bridging stress degradation

Search Result 3, Processing Time 0.017 seconds

Fatigue analysis of partly damaged RC slabs repaired with overlaid UHPFRC

  • Deng, Pengru;Kakuma, Ko;Mitamura, Hiroshi;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.19-32
    • /
    • 2020
  • Due to repetitive traffic loadings and environmental attacks, reinforced concrete (RC) bridge deck slabs are suffering from severe degradation, which makes structural repairing an urgency. In this study, the fatigue performance of an RC bridge deck repairing technique using ultra-high performance fiber reinforcement concrete (UHPFRC) overlay is assessed experimentally with a wheel-type loading set-up as well as analytically based on finite element method (FEM) using a crack bridging degradation concept. In both approaches, an original RC slab is firstly preloaded to achieve a partly damaged RC slab which is then repaired with UHPFRC overlay and reloaded. The results indicate that the developed analytical method can predict the experimental fatigue behaviors including displacement evolutions and crack patterns reasonably well. In addition, as the shear stress in the concrete/UHPFRC interface stays relatively low over the calculations, this interface can be simply simulated as perfect. Moreover, superior to the experiments, the numerical method provides fatigue behaviors of not only the repaired but also the unrepaired RC slabs. Due to the high strengths and cracking resistance of UHPFRC, the repaired slab exhibited a decelerated deterioration rate and an extended fatigue life compared with the unrepaired slab. Therefore, the proposed repairing scheme can afford significant strengthen effects and act as a reference for future practices and engineering applications.

Equivalent boundary conditions to analyze the realistic fatigue behaviors of a bridge RC slab

  • Khan, Arslan Q.;Deng, Pengru;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.369-383
    • /
    • 2022
  • In this study, an equivalent boundary conditions (BCs) determination method is developed numerically for a panel reinforced concrete (RC) slab to realistically analyze the deformation and fatigue behaviors of a bridge RC slab. For this purpose, a finite element analysis of a bridge RC slab is carried out beforehand to calculate the stiffness of the bridge RC slab, and then the equivalent BCs for the panel RC slab are determined to achieve the same stiffness at the BCs to the obtained stiffness of the bridge RC slab at the corresponding locations of the bridge RC slab. Moreover, for the simulation of fatigue behaviors, fatigue analysis of the panel RC slab is carried out employing a finite element method based on a numerical model that considers the bridging stress degradation. Both the determined equivalent BCs and the BCs that have been typically applied in past studies are employed. The analysis results confirm that, in contrast to the panel RC slab with typically used BCs, the panel RC slab with equivalent BCs simulate the same bending moment distribution and deformation behaviors of the bridge RC slab. Furthermore, the equivalent BCs reproduce the extensive grid crack pattern in the panel RC slab, which is alike the pattern normally witnessed in a bridge RC slab. Conclusively, the panel RC slab with equivalent BCs behaves identical to the bridge RC slab, and, as a result, it shows more realistic fatigue behaviors observed in the bridge RC slab.

Analytic Approach to Fiber Reinforced Composite under Cyclic Loading (반복하중을 받는 섬유 보강 콘크리트의 해석적 접근)

  • Shin, Kyung-Joon;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.669-672
    • /
    • 2006
  • Recently, large efforts have been made to develop and understand the behavior of Fiber Reinforced Concrete. As in the static loading cases, many researches have been done. However, a few studies have been conducted in cyclic behaviors of FRC. The main objective of the present work is to investigate the cyclic behavior of fiber reinforced concrete with theoretical method. First, cyclic constitutive relations which describe the crack bridging stress considering non-uniform interfacial bond degradation in short randomly oriented fiber reinforced matrix composites under uniaxial cyclic tension were considered. A cyclic degradation model of single fiber based on micromechanics also taken into consideration. As an example, fatigue analysis for ECC with PVA fiber was conducted using proposed equations. Results shows that proposed method can establish a basis for analyzing cyclic behavior of fiber reinforced composites.

  • PDF