• Title/Summary/Keyword: bridges construction

Search Result 1,072, Processing Time 0.137 seconds

Development of an Assumed Strain Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 가정된 변형률 쉘 요소 개발)

  • Kim, Ki-Du;Song, Sak Suthasupradit;Hwang, Hyun-Jin;Park, Jae-Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.108-117
    • /
    • 2010
  • The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, the different jacking forces are required in the inner and outer webs. And it is impossible to calculate different jacking forces in the inner and outer webs if we use the frame element for construction stage analysis. In order to overcome this problem, the use of shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of an assumed strain shell element and its application of PSC box girder bridge analysis are presented.

A Study on the Fatigue Behavior of RC Slabs of Widened Bridges (확폭교량 RC 상판의 피로거동에 관한 연구)

  • 홍순길;장동일
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.143-150
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existmg bridges structurally a single structure. Since the joining-constructiori method has several problems in design and construction viewpoint, this study is conducted in order to investigate the flexural fatigue behavior of RC slabs, which are widened and influenced by traffic-induced vibration of existmg bridge during placing and curing of new concrete, with the prototype fatigue test. It was found that stress concentration at the jclmts anti slips between steel bar and concrete are occured. Hut, the general tx:havinrs are similar to the original state and joining-construction method using expansive concrete nut~gated the influence of the trafflc-induced vibration.

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu;Renkang Hu;Menggang Yang;Dongliang Meng
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.333-343
    • /
    • 2023
  • Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

Design and Construction of Integral Abutment Bridge (일체 구조형식 교량의 설계 및 시공기법 연구)

  • 이성우;나정우;조남훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.121-128
    • /
    • 1996
  • In this study design and construction technique for joint-less integral abutment for short to mid span bridges was developed. Expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. Design method for pile subject to vertical and horizontal force was proposed. Backfill, approach slab and details of its connection joint with pavement was also proposed.

  • PDF

Reliability-Based Assessment of Safety and Residual Carrying-Capacity of Steel-Box Pedestrian Bridges (신뢰성에 기초한 강상형 보도육교의 안전도 및 잔존 내하력평가)

  • 조효남;최영민;이은철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.202-211
    • /
    • 1996
  • A number of typical type of steel-box pedestrian bridges are constructed in the metropolitan highway or heavy traffic urban area. Although it has the advantage of speedy construction because of its simple structural form and prefabricated erection method, it has been reported that many of these bridges are deteriorated or damaged and thus are in the state such that it would give unsafe and uncomfortable feeling to pedestrians. In the paper, for the realistic assessment of safety and residual earring-capacity of deteriorated and/or damaged steel box pedestrian bridges, an interactive non-linear limit state model are formulated based on the von Mises' combined stress yield criterion. It is demonstrated that the proposal model is effective for the reliability-based safety assessment and residual carrying-capacity evaluation of steel-box pedestrian bridges. In addition, this study suggests an effective and practical field load test method for pedestrian bridges.

  • PDF

Cost Effectiveness of Bse-Isolation for Bridges in Low and Moderate Seismic Region (중저진 지역에서의 지진격리교량의 경제적 효율성에 관한 연구)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.178-185
    • /
    • 1999
  • Minimum life-cycle cost helps to evaluate cost effectiveness of base-isolated bridges under specific condition. Life-cycle cost mainly consists of the initial construction cost and the expected damage cost. Damage cost estimation needs proper model of input ground motion failure probability evaluation method and limit states definition. We model the input ground motion as spectral density function compatible with the response spectra defined at each seismicity and site condition. Spectrum analysis and crossing theory is suitable for reseating calculation of failure probabilities in the process of cost minimization. Limit states of base-isolated bridges re defined for superstructure isolator and pier respectively The method is applied to both base-isolated bridges and conventional bridges under the same conditions to investigate cost effectiveness of base isolation in low and moderate seismic region. the results show that base-isolation of bridges are more effective in low and moderate seismic region and that the site effects on the economical efficiency may not be negligible in such a region.

  • PDF

Determination of structural behavior of Bosporus suspension bridge considering construction stages and different soil conditions

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris;Turker, Emel
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.405-429
    • /
    • 2014
  • In this paper, it is aimed to determine the structural behavior of suspension bridges considering construction stages and different soil conditions. Bosporus Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element model of the bridge is constituted using SAP2000 program considering existing drawings. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength of steel and concrete and geometric variations is included in the analysis. Time dependent material properties are considered as compressive strength, aging, shrinkage and creep for concrete, and relaxation for steel. To emphases the soil condition effect on the structural behavior of suspension bridges, each of hard, medium and soft soils are considered in the analysis. The structural behavior of the bridge at different construction stages and different soil conditions has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. At the end of the analyses, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given in detail. Also, displacement and stresses for bridge foundation are given with detail. It can be seen from the analyses that there are some differences between both analyses (with and without construction stages) and the results obtained from the construction stages are bigger. It can be stated that the analysis without construction stages cannot give the reliable solutions. In addition, soil condition have effect on the structural behavior of the bridge. So, it is thought that construction stage analysis using time dependent material properties, geometric nonlinearity and soil conditions effects should be considered in order to obtain more realistic structural behavior of suspension bridges.

Effect of cross-beam on stresses revealed in orthotropic steel bridges

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.149-163
    • /
    • 2015
  • Orthotropic steel highway bridges exist almost everywhere in world, especially in Europe. The design of these bridges started very early in 20th century and ended with a conventional orthotropic steel bridge structure, which is today specified in DIN FB 103. These bridges were mostly built in 1960's and exhibit damages in steel structural parts. The primary reason of these damages is the high pressure that is induced by wheel- loads and therefore damages develop especially in heavy traffic lanes. Constructive rules are supplied by standards to avoid damages in orthotropic steel structural parts. These rules are first given in detail in the standard DIN 18809 (Steel highway- and pedestrian bridges- design, construction, fabrication) and then in DIN- FB 103 (Steel bridges). Bridges built in the past are today subject to heavier wheel loads and the frequency of loading is also increased. Because the vehicles produced today in 21st century are heavier than before and more people have vehicle in comparison with 20th century. Therefore dimensioning or strengthening of orthotropic steel bridges by using stiffer dimensions and shorter spans is an essence. In the scope of this study the complex geometry of conventional steel orthotropic bridge is generated by FE-Program and the effects of cross beam web thickness and cross beam span on steel bridge are assessed by means of a parameter study. Consequently, dimensional and constructional recommendations in association with cross beam thickness and span will be given by this study.

Time Dependent Analysis Considering the Construction Sequences in Bridges of Movable Scaffolding System (MSS) (시공단계를 고려한 MSS 공법 교량의 시간의존적 거동해석)

  • Kwak Hyo-Gyoung;Son Je-Kuk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.167-174
    • /
    • 2005
  • Through time-dependent analyses of RC bridges constructed by a movable scaffolding system (MSS) considering the construction sequence and creep deformation of concrete, structural responses related to the member forces are reviewed. On the basis of the compatibility condition and equilibrium equation at every construction stage, basic equations that can describe the moment variation with time in movable scaffolding construction are derived. By using the introduced relations, the design moment and its variation over time can easily be obtained with only the elastic analysis results and without additional time-dependent analyses considering the construction sequences. In addition, the design moments determined by the introduced equations are compared with the results from a rigorous numerical analysis with the objective of establishing the relative efficiencies of the introduced equations.

  • PDF