• 제목/요약/키워드: bridge system

검색결과 3,071건 처리시간 0.025초

임베디드 리눅스와 유전자 알고리즘을 이용한 교량 진단 시스템 설계 (The Design of Bridge Diagnosis System Using Genetic Algorithm & Embedded LINUX)

  • 박세현;송근영
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.355-360
    • /
    • 2005
  • 본 논문에서는 임베디드 리눅스와 유전자 알고리즘을 이용한 교량 진단 시스템의 설계에 대하여 기술한다. 제안된 시스템은 임베디드 리눅스 환경 하에서 동작하며, 교량의 상태는 인터넷을 통해 원격으로 모니터링을 한다. 그리고 다양한 교량 진단용 센서에 대해서 최적의 이득과 오프셋을 찾기 위해 유전자 알고리즘을 내장하고 있어 계측의 측정 범위가 크다. 제안된 방법의 검증은 시스템 기반에서 이루어졌다.

Stochastic space vibration analysis of a train-bridge coupling system

  • Li, Xiaozhen;Zhu, Yan
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.333-342
    • /
    • 2010
  • The Pseudo-Excitation Method (PEM) is applied to study the stochastic space vibration responses of train-bridge coupling system. Each vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension system possessing 15 degrees-of- freedom. The bridge is modeled as a spatial beam element, and the track irregularity is assumed to be a uniform random process. The motion equations of the vehicle system are established based on the d'Alembertian principle, and the motion equations of the bridge system are established based on the Hamilton variational principle. Separate iteration is applied in the solution of equations. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method. The PSD of the 3-span simply-supported girder bridge responses, vehicle responses and wheel/rail forces are obtained. Based on the $3{\sigma}$ rule for Gaussian stochastic processes, the maximum responses of the coupling system are suggested.

Study of seismic performance and favorable structural system of suspension bridges

  • Zhang, Xin-Jun;Zhang, Chao
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.595-614
    • /
    • 2016
  • By taking the Runyang Highway Bridge over the Yangtze River with 1490 m main span as example, structural response of the bridge under the horizontal and vertical seismic excitations is investigated by the response spectrum and time-history analysis of MIDAS/Civil software respectively, the seismic behavior and the influence of structural nonlinearity on the seismic response of the bridge are revealed. Considering the aspect of seismic performance, the suitability of employing the suspension bridge in super long-span bridges is investigated as compared to the cable-stayed bridge and cable-stayed-suspension hybrid bridge with the similar main span. Furthermore, the effects of structural parameters including the span arrangement, the cable sag to span ratio, the side to main span ratio, the girder height, the central buckle and the girder support system etc on the seismic performance of the bridge are investigated by the seismic response spectrum analysis, and the favorable earthquake-resistant structural system of suspension bridges is also discussed.

고속철도교량의 새로운 3차원 유한요소 해석모델의 개발 (Development of a New Three-dimensional Finite Element Analysis Model of High-speed Railway Bridges)

  • 송명관;한인선;김선훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.444-451
    • /
    • 2003
  • In this study, a new three-dimensional finite element analysis model of high-speed railway bridges considering train-bridge interaction, in which various improved finite elements are used for modeling structural members, is proposed. The box-type bridge deck of a railway bridge is modeled by the NFS(Nonconforming Flat Shell) elements with 6 degrees of freedom. Track structures are idealized using the beam finite elements with the offset of beam nodes and those on Winkler foundation with two parameters. And, the vehicle model devised for a high-speed train is employed, which has an articulated bogie system. By Lagrange's equations of motion, the equations of motion of a bridge-train system can be formulated. Finally, by deriving the equations of the forces acting on a bridge considering bridge-train interaction the complete system matrices of total bridge-train system can be constructed. As numerical examples of this study, 2-span PC box-girder bridge is analyzed and results are compared with experimental results.

  • PDF

A new bridge-vehicle system part I: Formulation and validation

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.1-19
    • /
    • 2003
  • This paper presents the formulation of a new bridge-vehicle system with validation using the field data. Both pitching and twisting modes of the vehicle are considered in the contribution of the dynamic effects in the bridge responses. A heavy vehicle was hired as a control vehicle with known axle weight, axle spacing and spring coefficients. The measured responses were generated from the control vehicle running at a particular speed at a test span at Ma Tau Wai Flyover. The measured responses were acquired using strain gauges installed beneath the girder beams of the test bridge. The simulated responses were generated using BRVEAN that is a self-developed program based on the proposed bridge-vehicle system. The validation shows that the bridge model is valid for representing the test bridge and the governing equations are valid for representing the motion of moving vehicles.

GIS를 이용한 교량재해관리시스템 개발 (Development of a Bridge Disaster Management System Using GIS)

  • 안기원;유환희;최윤수;신석효
    • 대한공간정보학회지
    • /
    • 제7권2호
    • /
    • pp.69-80
    • /
    • 1999
  • 본 연구에서는 지리정보시스템을 이용하여 교량 안전 관리를 위한 교량재해관리시스템을 개발하고자 한다. 진주시에 위치한 교량시설물들에 대한 기본도, 도로망도, 교량위치도 등과 같은 여러 가지 도형 레이어 그리고 32개 교량에 관련된 속성자료들을 포함하여 데이터베이스를 구축하였다. Visual Basic 5.0 Language를 사용하여 여러 가지 교량안전관련 분석기능을 갖는 PC용 교량재해관리시스템을 개발하였다. 본 연구에서 개발된 교량재해관리시스템은 신속하고 효율적인 데이터검색, 파일관리, 교량제원의 검색과 관리, 교량관련 도면보기, 교통량조사의 검색과 관리, 교량점검결과와 보수상태의 검색과 관리 그리고 교량 안전등급의 평가의 기능을 가지고 있다.

  • PDF

Dynamic analysis of long-span cable-stayed bridges under wind and traffic using aerodynamic coefficients considering aerodynamic interference

  • Han, Wanshui;Liu, Huanju;Wu, Jun;Yuan, Yangguang;Chen, Airong
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.405-430
    • /
    • 2017
  • The aerodynamic characteristics of vehicles are critical to assess vehicle safety and passenger comfort for vehicles running on long span bridges in a windy environment. However, in previous wind-vehicle-bridge (WVB) system analysis, the aerodynamic interference between the vehicle and the bridge was seldom considered, which will result in changing aerodynamic coefficients. In this study, the aerodynamic coefficients of a high-sided truck on the ground (ground case) and a typical bridge deck (bridge deck case) are determined in a wind tunnel. The effects of existent structures including the bridge deck and bridge accessories on the high-sided vehicle's aerodynamic characteristics are investigated. A three-dimensional analytical framework of a fully coupled WVB system is then established based on the finite element method. By inputting the aerodynamic coefficients of both cases into the WVB system separately, the vehicle safety and passenger comfort are assessed, and the critical accidental wind speed for the truck on the bridge in a windy environment is derived. The differences in the bridge response between the windward case and the leeward case are also compared. The results show that the bridge deck and the accessories play a positive role in ensuring vehicle safety and improving passenger comfort, and the influence of aerodynamic interference on the response of the bridge is weak.

교량관리 전산화 시스템 개발 (Development of Bridge Maintenance System)

  • 이장화;장종탁;김성욱;장인호;이성준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.105-110
    • /
    • 1990
  • Effective maintenance system for national highway bridges has been requested due to increasing numbers of bridges. In this study, bridge data base is established in accordance with rating criteria for the structural conditions and functions of bridges. Maintenance system using PC-80386 hardware and ORACLE software is developed to rank the priority of either reconstruction or repairing of bridges and to provide with those information to bridge maintenance staff in order to perform bridge maintenance effectively. With this pre-establised data base and computerized maintenance system, data and information for planning of bridge construction could be obtained in times.

  • PDF

Time-frequency analysis of a coupled bridge-vehicle system with breathing cracks

  • Wang, W.J.;Lu, Z.R.;Liu, J.K.
    • Interaction and multiscale mechanics
    • /
    • 제5권3호
    • /
    • pp.169-185
    • /
    • 2012
  • The concrete bridge is likely to produce fatigue cracks during long period of service due to the moving vehicular loads and the degeneration of materials. This paper deals with the time-frequency analysis of a coupled bridge-vehicle system. The bridge is modeled as an Euler beam with breathing cracks. The vehicle is represented by a two-axle vehicle model. The equation of motion of the coupled bridge-vehicle system is established using the finite element method, and the Newmark direct integration method is adopted to calculate the dynamic responses of the system. The effect of breathing cracks on the dynamic responses of the bridge is investigated. The time-frequency characteristics of the responses are analyzed using both the Hilbert-Huang transform and wavelet transform. The results of time-frequency analysis indicate that complicated non-linear and non-stationary features will appear due to the breathing effect of the cracks.

Vibration suppression analysis of a long-span cable-stayed bridge based on earthquake-wind-traffic-bridge coupled system

  • Xinfeng Yin;Yong Liu;Wanli Yan;Yang Liu;Zhou Huang
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.379-387
    • /
    • 2023
  • Wind and earthquake loads may cause strong vibrations in large-span cable-stayed bridges, leading to the inability of the bridge to operate normally. An improved Pounding Tuned Mass Damper (PTMD) system was designed to improve the safety of the large-span cable-stayed bridge. The vibration control effect of the improved PTMD system on the large-span cablestayed bridge under the combined action of earthquake-wind-traffic was studied. Furthermore, the impact of different parameters on the vibration suppression performance of the improved PTMD system was analyzed. The numerical results indicate that the PTMD system is very effective in suppressing the displacements of the bridge caused by both the traffic-wind coupling and traffic-earthquake coupling. Moreover, the number, mass ratio, pounding stiffness, and gap values have a significant influence on the vibration suppression performance of the improved PTMD system. When the number of PTMD is increased from 3 to 9, the vibration reduction ratio of the vertical displacement is increased from 25.39% to 48.05%. As the mass ratio changes from 0.5% to 2%, the vibration reduction ratio increases significantly from 22.23% to 53.30%.