• Title/Summary/Keyword: bridge plate

Search Result 517, Processing Time 0.026 seconds

Assessment of the Degree of Fatigue Damage in Steel Plate-Girder Railway Bridges According to Span Length (지간장에 따른 강판형 철도교의 피로피해도 평가)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Nam, Wang-Hyone
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.313-320
    • /
    • 1999
  • Steel railway bridge gets vibration from moving load ; additionally, this kind of moving load is going to be a sufficient reason, which causes fatigue damage to steel railway bridge. Fatigue damage and stress curve were raised by moving load depends on span length in steel railway bridge. In other words, stress curve appears index regarding every axial load in short span, but self weight lets stress curve's change decrease in proportion to increasing span length. Thereby, we have studied that how the steel railway bridge appear fatigue damage in proportion to span length of steel railway bridge. Dynamic strain was measured in 4 steel plate-girder railway bridge during the trains was passing, which is located on the line of Kyoung-chun railway. And time history response analysis has been done in order to ensure actual survey. The results of this study show the decreased of the fatigue damage in steel railway bridge according to length of span. This paper ends is bases research of fatigue design in steel railway bridges according to span length.

  • PDF

Numerical study of performance of soil-steel bridge during soil backfilling

  • Beben, Damian
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.571-587
    • /
    • 2012
  • This paper presents results of a numerical analysis performed on a corrugated steel plate (CSP) bridge during a backfilling process. The analysed bridge structure was a box culvert having a span of 12315 mm as well as a clear height of 3550 mm. Obtained calculation results were compared with the experimental ones. The paper is presented with the application of the Fast Lagrangian Analysis of Continua (FLAC) program based on the finite differences method (FDM) to determine behaviour of the soil-steel bridge structure during backfilling. The assumptions of a computational 2D model of soil-steel structure with a non-linear interface layer are described. Parametric analysis of the interface element is also given in order to receive the most realistic calculation results. The method based on this computational model may be used with large success to design calculations of this specific type of structure instead of the conventional and fairly inaccurate analytical methods. The conclusions drawn from such analysis can be helpful mostly for the assessment of the behaviour of steel-soil bridge structures under loads of backfilling. In consideration of an even more frequent application of this type of structure, conclusions from the conducted analysis can be generalized to a whole class of similar structural bridge solutions.

A Study on the Design Bending Moments of Long Span Decks with KL-510 Load (KL-510 하중을 적용한 장지간 바닥판의 설계휨모멘트에 관한 연구)

  • Chung, Chulhun;Lee, Hanjoo;Joo, Sanghoon;An, Hohyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.375-384
    • /
    • 2016
  • In the current Korea highway bridge design code (KHBDC), the criteria of concrete bridge decks are mainly based on short span decks of steel plate girder bridge, there are very little the specific criteria of long span decks in the twin steel plate girder bridge. Therefore, to put more rational and practical design criteria of the long span decks on the code, the complements of the related criteria are required in the current design code. This paper proposed the design bending moments of decks with 6.0~12.0m span for KL-510 load in direction to bridge (longitudinal direction) and perpendicular direction to bridge (transverse direction). The effects of orthotropic concrete decks, stiffness of steel girders and multiple lane loading factors (MLLF) were reflected in the design bending moments. The proposed design bending moments were compared to the design bending moments with DB-24 load.

Optimum Design of LB-DECK Plate Girder Bridge (LB-DECK 플레이트 합성 거더교의 최적설계)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.135-142
    • /
    • 2008
  • This study is concerned with the optimum design of LB-Deck plate girder bridge. The optimizing problems of the composite bridge are formulated with objective functions and constraints. The objective functions are formulated as the total cost of the concrete deck and steel girder construction and the constraints are derived by criteria with respect to the Korean Highway bridge design. The optimizing algorithm using SUMT for optimum design of the Simple span, 2-Span, 3-span LB-deck plate and general RC-steel composite girder bridges (L=60m) which act live load(DB24). And their optimum numerical results are compares and analyzed to examine the possibility of optimization, the application and convergency of this optimizing algorithm.

Experimental study on fatigue behavior of innovative hollow composite bridge slabs

  • Yang Chen;Zhaowei Jiang;Qing Xu;Chong Ren
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.745-757
    • /
    • 2023
  • In order to study the fatigue performance of the flat steel plate-lightweight aggregate concrete hollow composite bridge slab subjected to fatigue load, both static test on two specimens and fatigue test on six specimens were conducted. The effects of the arrangement of the steel pipes, the amplitude of the fatigue load and the upper limit as well as lower limit of fatigue load on failure performance were investigated. Besides, for specimens in fatigue test, strains of the concrete, residual deflection, bending stiffness, residual bearing capacity and dynamic response were analyzed. Test results showed that the specimens failed in the fracture of the bottom flat steel plate regardless of the arrangement of the steel pipes. Moreover, the fatigue loading cycles of composite slab were mainly controlled by the amplitude of the fatigue load, but the influences of upper limit and lower limit of fatigue load on fatigue life was slight. The fatigue life of the composite bridge slabs can be determined by the fatigue strength of bottom flat steel plate, which can be calculated by the method of allowable stress amplitude in steel structure design code.

An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge (기존 무도상 판형교 궤도의 종저항거동에 대한 실험)

  • Kim, Kyoungho;Hwang, Inyoung;Baek, Inchul;Choi, Sanghyun
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Since the track of the ballastless steel plate girder bridge is connected to a main girder without a deck and a ballast, the impact generated by train passage is transferred directly to bridge main members, and it can cause frequent damage of the bridge as well as higher noise and vibration level. Applying the CWR (Continuously Welded Rail) technology can reduce this structural problems, and, to this end, it is necessary to understand the characteristics of factors influencing vehicle-track or track-bridge interaction. In this paper, experimental study results are presented for examining the longitudinal resistance characteristics of the track, including a rail fastener, a sleeper fastener, and a track skeleton, installed on a ballastless steel plate girder bridge. The experiment is conducted using a disposed bridge from service, which is transported to a laboratory. The experimental results show that the rail fastener satisfies the performance criteria of the longitudinal resistance presented in KRS TR 0014-15, and the longitudinal resistance of old and new type sleeper fasteners is higher than the values provided in the existing research. Also, the unloaded longitudinal resistance of the ballastless track is between the ballast and the concrete tracks.

Design of Partial Half-Through Type Plate Girder Railway Bridge (부분중로형 판형 철도교의 계획과 설계)

  • Kim, Sung-Won;Kwon, So-Jin;Kim, Jong-Hee;Han, Chul
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.299-303
    • /
    • 2001
  • In this paper, we introduce the Partial Half-Through Type Plate Girder Bridge proposed by Hyundai Development Co. and KRTC Consortium in Turn-Key Based design last year, and this type of bridge may be adapted to the railway bridge under similar conditions. This bridge across the North Han River was to be concerned its find view and the protection of water source. For its location is inside the dam, it required the long span and the clearance for the flood also. Its new composite section was able to diminish the deflection and vibration. Its shop-fabrication could control its quality easily, and might to be launched. This structural type have satisfied its functions, construction situations, and overall safeties, so this is the field-oriented type. However the composition and connections of the proposed members are different to the recent forms, and difficult to be applied to present specifications. Therefore it requires a certification on the application for more safety by not only analytical verifications but also experimental studies. Nevertheless, this type of bridge may have some more applications from now on.

  • PDF

Performance Evaluation of Encased-Concrete Bridge Plate(Deep Corrugated Steel Plate) Member (콘크리트 충전 브릿지 플레이트(대골형 파형강판) 부재의 성능평가)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kim, Tae-Soo;Lee, Hyoung-Ho;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.297-303
    • /
    • 2010
  • The current encased-concrete deep corrugated steel plate has an arch type plate structure, which is a compressive strength-dominant structure that has a small moment due to its arch shape. Therefore, it increases the strength against compression by adding reinforcements to make concrete-filling spaces for increasing the compressive strength and forming cross sections that contain reinforced concrete. In this study, the safety factor of the new-concept encased-concrete bridge plate member was evaluated by comparing the compressive strength obtained from the compressive tests, flexural tests and the design compressive strength determined by using the Canadian Highway Bridge Design Code (CHBDC, 2003), which is a design standard for the encased-concrete bridge plate structures. The results of the safety factor evaluation using the design compressive strength and the test results showed that the safety factor was well above the appropriate value 2.0, which could be adjudged very conservative. If the safety factor based on this study results is considered and applied to the design, economical construction will be possible due to the reduced cross section and construction cost.

Buckling Behaviors of Plate Girder with Corrugated Steel Web (파형 복부판을 갖는 플레이트 거더의 좌굴거동)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.221-228
    • /
    • 2011
  • Because steel plate girder bridge has big slenderness ratio, buckling is a major design factor. The objective of this study is to analyze the buckling behaviors of plate girder with I-girder and corrugated steel web and to examine the advantages of plate girder with corrugated steel web. Various parametric study according to the change of web height, web thickness, and load condition are examined. It is shown that plate girder with corrugated steel web is more effective than plate girder with I-girder and proper corrugated angle(${\theta}$) is $15^{\circ}{\sim}22^{\circ}$.

Ultimate Strength Evaluation of Through Plate Girder Bridge Using Nonlinear Inelastic Analysis (비선형비탄성해석을 활용한 하로 판형교의 극한강도 평가)

  • Jeon, Shin-Youl;Tai-Huu, Thai;Kim, Seung-Eock
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1713-1718
    • /
    • 2010
  • An ultimate strength evaluation of the through plate girder bridge using nonlinear inelastic analysis is presented. In this method, separate member capacity checks after analysis are not required, because the stability and strength of the structural system and its component members can be rigorously treated in analysis. The method captures the inelastic redistribution of internal forces throughout a structural system, and allows an economic use of material for highly indeterminate steel bridges.

  • PDF