• Title/Summary/Keyword: bridge plate

Search Result 517, Processing Time 0.021 seconds

An Effect of Repair & Retrofit of Stringer in Steel Plate Girder Railway Bridge with Fatigue Cracks (피로균열이 발생한 강판형 철도교 세로보의 보수보강효과)

  • Hong, Sung-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, a series of finite element analysis using LUSAS were performed in order to assess the quantitative effects of repair and retrofit of stringer in steel plate girder railway bridge with fatigue cracks. And cutoff types of end part of upper flange were considered as right-angled type and round-angled type. Also, as a method of repair and retrofit of fatigue cracks in stringer, perforation of stop-hole and installation of bracket were considered. From the analysis result, it was possible to assess the fatigue safety and fatigue life of stringer with fatigue cracks, and to estimate the stress intensity factor range in cut-off part of stringer using J-integral method. Also, according to the method of perforation of stop-hole and installation of bracket, it was possible to calculate the crack propagation life at the cut-off part of stringer.

Design and Fabrication of an Electrostatic Microplate Resonator (정전형 미소 평판 공진자의 설계 및 제작)

  • Jeong, Ok-Chan;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.494-502
    • /
    • 1999
  • This paper represents an electrostatic micro plate resonator which consists of a rigid plate suspended with four bridges and a counter electrode. The bridges of the resonator are designed corrugated so that the residual stress are released. The FEM simulation results confirmed that the deflection characteristic of the corrugated bridge is hardly affected by the initial residual tensile stress. One resonator with the corrugated bridges and the other with the flat bridges were fabricated by the boron diffusion process and the anisotropic etch process. The vertical deflection of the fabricated electrostatic resonator was measured with a laser vibrometer, and the data were compared with the calculation results. The deflection of the resonator with the flat bridges is smaller than the deflection of that with the corrugated ones because of the residual stress. The residual stress release effect was confirmed by the fact that the measured deflection of the resonator with the corrugated bridges in close to the calculated deflection of the resonator with the flat ones with the initial stress neglected.

  • PDF

Strengthening Effect of CFRP on the R/C Rahmen Bridge (R/C 라멘교에 적용된 CFRP의 보강효과)

  • 심종성;정영수;윤선원;김규선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.328-333
    • /
    • 1996
  • Concrete can be defective for several reasons, including an inadequate design, material selection of workmanship, failure to appreciate the hazards associated with prevailing enviromental conditions. Concrete can also deteriorate or be damaged in use. Thus, it is necessary to evaluate the safety of existing concrete strucutres. On the basis of these reasons, they must be performed for repair or rehabilitation. Presently, strengthening methods of R/C structure used in Korea, are an enlargement of concrete member, strengthening with steel plate or CFRP on the R/C structure. It has been widely estabilished that strengthening effect of CFRP is superior to steel plate in terms of it's lighter unit weight and higher tensile strength. But there are no construction results of CFRP on the civil R/C structure in Korea. The strengthening design technique with CFRP, it's const겨ction, and it's strengthening effect for deteriorated R/C rahmen bridge is introduced in this paper.

  • PDF

Fatigue Test and Service Life Assessment of Steel Truss Bridges with Initial Imperfections (초기결함을 갖는 강교량의 피로시험 및 수명 평가)

  • 방명석
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.119-122
    • /
    • 2000
  • The truss bridge is composed of numerous steel beams. In long span bridges the size of beams is getting larger, so the number of plate girders is increasing instead of rolled beams. This plate girder has long welding lines at the intersection of steel plates. The improper welding at the intersection line causes the steel bridge to be structurally unsafe. In this paper the loss of member section from improper welding was measured and the experimental testing was performed to get the S-N curve from testing models with sectional losses. The improper welding resulted in the lowering of structural safety and the shortening of life cycle.

  • PDF

Estimation of Flutter Derivatives for a Plate Girder Bridge Using Forced and Free Oscillation Tests (자유진동 및 강제진동 기법을 이용한 플레이트 거더교의 플러터 계수 산정)

  • Kim, Jong-Dae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.332-335
    • /
    • 2011
  • 바람에 의해 발생하는 장대교량의 진동현상은 버펫팅과 와류진동 그리고 플러터 등으로 구분할 수 있으며, 특히 설계풍속에 해당하는 강풍에 안전한 교량을 설계하는 것이 주된 관심사항이다. 이러한 장대교량의 공기역학적인 안정성 검토에 사용되는 플러터 계수를 풍동실험을 통하여 산정하였다. 본 논문에서는 일반적인 플레이트 거더교의 강풍에 대한 안정성을 검토하기 위하여 풍동실험을 수행하였으며, 자유진동 기법과 강제진동 기법을 사용하여 추출한 플러터 계수를 비교하였다. 자유진동 기법은 교량단면에 초기변위를 주어 상하 및 회전 진동을 하는 교량단면의 변위를 측정한 후 system identification 기법으로 플러터 계수를 구하게 된다. 그리고 강제진동 기법은 상하방향의 강제진동과 회전방향의 강제진동 실험을 독립적으로 수행하여 교량단면에 작용하는 풍하중과 단면의 진동을 분석함으로써 플러터 계수를 추정하게 된다. 그리고 플러터 계수의 비교를 통하여 강제진동 기법과 자유진동 기법의 장단점을 분석하였다.

  • PDF

Numerical Analysis to Investigate Dynamic Characteristics of Steel Plate Girder Railway Bridges without Ballast (무도상 판형교의 동적거동특성 분석을 위한 해석적 연구)

  • 최진유;오지택;김현민;김영국
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1080-1085
    • /
    • 2002
  • A dynamic characteristics of existing steel plate girder railway bridges without ballast were investigated from the finite element analysis. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional bridge models and wheel loads were produced by averaging field measured wheel loads of running vehicles at various speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 9m, 12m and 18m span length were investigated and compared with the limit values specified in Korean railway bridge specification.

  • PDF

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

An Experimental Study on the dynamic behavior of 4-Span Cable-Stayed Bridge with ${\pi}$-Type Girder (${\pi}$형 거더를 가진 4경간 사장교의 동적거동에 관한 실험적 연구)

  • Cho, Jae-Young;Kim, Young-Min;Lee, Hak-Eun;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.15-24
    • /
    • 2004
  • Generally, a ${\pi}$-type girder composed of two I-type girders is known to have a significant disadvantage in wind resistance design because of aerodynamic instability. A representative bridge for this girder was Tacoma Narrows Bridge. Since Tacoma Narrows Bridge had very low stiffness of the bridge structure and its cross-section shape had aerodynamic instability, the bridge collapsed after severe torsion and vibration events in 19m/s wind speed. Aerodynamic vibration can be avoided by enhancing structural stiffness and damping factor and conducting a study of cross-section shapes. This study shows the angle of attack for the four-span cable stayed bridge having ${\pi}$-type cross-section and describes the aerodynamic characteristics of the changed cross-section with aerodynamic vibration damping additions, by carrying out two-dimension vibration tests. As a result of uniform flow and turbulent flow, the study shows that because the basic ${\pi}$-type cross-section alone can have efficient wind resistant stability, there is no need to have additional aerodynamic damping equipment. Since this four 230m-main-span bridge has a large frequency and also has a big stiffness compared to other bridges containing a similar cross-section, it has aerodynamic stability under the design wind speed.

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

The Distribution of the Normal Traffic Loads on the Steel Plate Girder Bridge (실동하중에 의한 강판형교의 교통하중 분포)

  • Woo, Sang-Ik;Jung, Kyoung-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • The objectives of the study are to know the strain distribution and modal dynamic behaviour of steel bridge girders by actual traffic load. The live load effect depends on many parameters including the span length, gross vehicle weight, axle weight, axle configuration so on. For the estimation of static and dynamic characteristic, strain data caused by moving loads and traffic characteristics of passing vehicle under actual traffic load have measured using Bridge Weigh in Motion. To confirm the reliability of BWIM system, strain data measured using the $120{\Omega}$ strain gauge under the same condition. It is considered that the data acquired from BWIM system have reliability through the analysis and comparison between stress measured by strain data from BWIM and computed by FEM. Additionally according to the measured strain data of up-line and down-line on the highway, the up-line bridge grows more faster than the down-line bridge and girder 4 and 5 carry more load when vehicles pass the inner line and girder 2 and 3 does when vehicles pass the outer line as this case(the bridge composed with 5 girders).

  • PDF