• Title/Summary/Keyword: bridge performance level

Search Result 204, Processing Time 0.025 seconds

A New Topology of Four-Level Hybrid Half-Bridge Flying-Capacitor Inverter (4-레벨 하이브리드 하프 브리지 플라잉 캐패시터 인버터의 새로운 토폴로지)

  • Pribadi, Jonathan;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.315-316
    • /
    • 2019
  • This paper proposes the operation scheme and control method for a four-level hybrid half-bridge flying-capacitor inverter (4L-HHBFCI). With in-phase disposition level-shifted modulation (IPD), the flying capacitor voltage ripple is less than 1% of the reference value, while the line-to-line voltage total harmonic distortion is 23.27% at unity modulation index. The performance and effectiveness of the proposed inverter operation have been verified by simulation results.

  • PDF

A Study on the Technical Level Analysis of Suspension Bridge in Korea (한국의 현수교분야 기술수준 분석에 관한 연구)

  • Kim, Kyong-Hoon;Lee, Du-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6517-6526
    • /
    • 2015
  • This study analyzes the technical level and shows the priority technology for suspension bridges that play an iconic role as the country's landmark and contain an economic value. Analysis results show the technical level of suspension bridge is 82 percent compared to developed countries. In detail, the technical levels of 'materials', 'planning and design', and 'construction and maintenance' are 80.2 %, 81.7%, and 83.7% respectively. This study analyzes economic, social, technical importances and presents 'high-performance packaging material' as a priority technology.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.

Evaluation on Performance Level of Design-Build and Design-Bid-Build (Focused on Bridge Construction Projects) (발주방식에 따른 성능수준 평가에 관한 연구)

  • Cho, Kyu-Man;Kim, Hee-Wook;Hyun, Chang-Taek;Koo, Kyo-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.2
    • /
    • pp.75-83
    • /
    • 2007
  • Recently, the Design-Build (DB) delivery method in public sector makes some argument by reason of the initial cost which is more higher than those of Design-Bid-Build (DBB). According to the results of pervious researches related to the performance evaluation of delivery method, DB can lead the reduction of project cycle time and also is superior to the traditional DBB in terms of construction quality. The performance on each delivery method could be generally evaluated by a project cost and a project cycle time as one of quantitative analyses, and also by construction quality as one of qualitative analyses. In most researches, the evaluation of performance level based on delivery methods has been evaluated by the degree of their satisfaction through the interview with owners. Therefore, this paper analyzed the design documents of construction projects delivered by traditional DBB and DB in bridge construction projects in order to measure design quality, constructability, maintainability, and etc. As an above-mentioned analyses, finally, this research shown that how much the difference of performance level is by each delivery method.

Performance evaluation of in-service open web girder steel railway bridge through full scale experimental investigations

  • Sundaram, B. Arun;Kesavan, K.;Parivallal, S.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.255-268
    • /
    • 2019
  • Civil infrastructures, such as bridges and tunnels are most important assets and their failure during service will have significant economic and social impact in any country. Behavior of a bridge can be evaluated only through actual monitoring/measurements of bridge members under the loads of interest. Theoretical analysis alone is not a good predictor of the ability of a bridge. In some cases, theoretical analyses can give less effect than actual since theoretical analyses do not consider the actual condition of the bridge, support conditions, level of corrosion and damage in members and connections etc. Hence actual measurements of bridge response should be considered in making decisions on structural integrity, especially in cases of high value bridges (large spans and major crossings). This paper describes in detail the experimental investigations carried out on an open web type steel railway bridge. Strain gages and displacement transducers were installed at critical locations and responses were measured during passage of locomotives. Stresses were evaluated and extrapolated to maximum design loading. The responses measured from the bridge were within the permissible limits. The methodology adopted shall be used for assessing the structural integrity of the bridge for the design loads.

Seismic Performance Evaluation of Full-size Non-seismic Circular RC Bridge Piers with Longitudinal Steel Lap splice (주철근 겹침이음된 실물 비내진 원형 교각의 내진성능평가)

  • Chung Young-Soo;Lee Dae-Hyung;Ko Seong-Hyun;Lee Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.697-707
    • /
    • 2004
  • Most bridge piers were practically designed and constructed with lap spliced longitudinal reinforcing steels before the 1992 seismic design provisions of Korea Bridge Design Specification were implemented. It has been known that lap splice of longitudinal reinforcement in the plastic hinge region is not desirable for seismic performance of RC bridge piers. The objective of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test and to propose the need of seismic retrofit of existing bridge piers through the damage level. Test specimens were nonseismically designed with the aspect ratio 4.0 which could induce the flexural failure mode. It was confirmed from this experiment that significant reduction of seismic performance was observed for test specimens with lap spliced longitudinal reinforcing steels. Pertinent seismic retrofit was determined to be needed for existing RC bridge piers with the lap-spliced of $50\%$ longitudinal reinforcing steels.

Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (II-Proposal for the Seismic Design Procedure) (마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(II-내진설계 절차 제안))

  • Gil, Heungbae;Park, Sun Kyu;Han, Kyoung Bong;Yoon, Wan Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • In a previous paper, ambient vibration tests were conducted on a cable stayed bridge with resilient-friction base isolation systems (R-FBI) to extract the dynamic characteristics of the bridge and compare the results with a seismic analysis model. In this paper, a nonlinear seismic analysis model was established for analysis of the bridge to compare the difference in seismic responses between nonlinear time history analysis and multi-mode spectral analysis methods in the seismic design phase of cable supported bridges. Through these studies, it was confirmed that the seismic design procedures of the "Korean Highway Bridge Design Code (Limit State Design) for Cable Supported Bridges" is not suitable for cable supported bridges installed with R-FBI. Therefore, to reflect the actual dynamic characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure is proposed that applies the seismic analysis method differently depending on the seismic isolation effect of the R-FBI for each seismic performance level.

A Control Method to Improve Power Conversion Efficiency of Three-level NPC-Based Dual Active Bridge Converter (Three-Level NPC-Based Dual Active Bridge Converter의 도통손실 절감을 위한 새로운 스위칭 방법)

  • Lee, Jun-Young;Choi, Hyun-Jun;Kim, Ju-Yong;Jun, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.150-158
    • /
    • 2017
  • This study proposes a new pulse-width modulation switching pattern for the low conduction loss of a three-level neutral point clamped (NPC)-based dual-active bridge (DAB) converter. The operational principle for a bidirectional power conversion is a phase-shift modulation. The conventional switching method of the three-level NPC-based DAB converter shows a symmetric switching pattern. This method has a disadvantage of high root-mean-square (RMS) value of the coupling inductor current, which leads to high conduction loss. The proposed switching method shows an asymmetrical pattern, which can reduce the RMS value of the inductor current with lower conduction loss than that of the conventional method. The performance of the proposed asymmetrical switching method is theoretically analyzed and practically verified using simulation and experiment.

Proposal of Maintenance Scenario and Feasibility Analysis of Bridge Inspection using Bayesian Approach (베이지안 기법을 이용한 교량 점검 타당성 분석 및 유지관리 시나리오 제안)

  • Lee, Jin Hyuk;Lee, Kyung Yong;Ahn, Sang Mi;Kong, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.505-516
    • /
    • 2018
  • In order to establish an efficient bridge maintenance strategy, the future performance of a bridge must be estimated by considering the current performance, which allows more rational way of decision-making in the prediction model with higher accuracy. However, personnel-based existing maintenance may result in enormous maintenance costs since it is difficult for a bridge administrator to estimate the bridge performance exactly at a targeting management level, thereby disrupting a rational decision making for bridge maintenance. Therefore, in this work, we developed a representative performance prediction model for each bridge element considering uncertainty using domestic bridge inspection data, and proposed a bayesian updating method that can apply the developed model to actual maintenance bridge with higher accuracy. Also, the feasibility analysis based on calculation of maintenance cost for monitoring maintenance scenario case is performed to propose advantages of the Bayesian-updating-driven preventive maintenance in terms of the cost efficiency in contrast to the conventional periodic maintenance.

Basic Study on Bridge Asset Management Framework and LOS for Efficient Downtown Bridge Maintenance (효율적인 도심지 교량관리를 위한 교량자산관리 체계 및 서비스수준(LOS) 개발을 위한 기초연구)

  • Kim, Gyung-Hyun;Kim, Dong-Jin;Lim, Jong-Kwon;Park, Mi-Yun;Lee, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.671-679
    • /
    • 2016
  • Bridges, which constitute one of the key facilities in a social infrastructure, are easily accessed and used by users, so that keeping their performance above a certain level is essential. According to various cases in the U.S., Japan and Europe with a long construction history, it is expected that the maintenance cost of bridges in Korea will increase continuously in the future, so a rational decision making system based on engineering factors is necessary to optimize the performance of and maintain them by allocating the limited budget efficiently. This study is a preliminary basic study for the purpose of developing a common asset management system for managing all of the bridges and maintaining the level of service provided by them. The scope of this preliminary study is limited to bridges in urban areas. The bridge asset management system for bridges in urban areas, their level of service (LOS) and performance measure (PM) were developed by carrying out a workshop consisting of both experts and stakeholders. The analysis on the weights of the value and performance measure for each performance indicator was carried out by using the multi-attribute utility theory and the AHP method. In order to confirm the application of the weight of the performance measure and value of the performance indicator, six bridges in an example city were selected, LOS analysis was applied and its results were reviewed.