• Title/Summary/Keyword: bridge cables

Search Result 246, Processing Time 0.02 seconds

Passive Control System for Mitigation of Cable Vibration in Cable-Stayed Bridges (사장교의 케이블 진동저감을 위한 수동 제어시스템)

  • Hwang, Inho;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.881-885
    • /
    • 2006
  • Rain-wind induced cable vibration can cause serious problems in cable-stayed bridges. Externally attached dampers have been used to provide an effective means to suppress the vibration of relatively short stay-cables. For very long stay-cables, however, such damper systems are rendered ineffective, as the dampers need to be attached near the end of cables for aesthetic reasons. This paper investigates a new control system to mitigate the cable vibration. The proposed control system which consists of a laminated rubber bearing and an internal damper may be installed inside of the cable anchorage. A simple analytical model of the cable-damper system is developed first based on the taut string representation of the cable. The response of a cable with the proposed control system is obtained and then compared to those of the cable with and without an external passive damper. The proposed stay-cable vibration control system is shown to perform better than the optimal passive viscous damper, thereby demonstrating its applicability in large cable-stayed bridges for mitigation of rain-wind induced vibration of stay-cables.

Development of Inspection Robot for Removing Snow on Stays of Cable-Stayed Bridge (사장교 케이블의 잔설 제거용 점검 로봇 개발)

  • Kim, Jaehwan;Seo, Dong-Woo;Jung, Kyu-San;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • Safety accidents have been reported due to falling accumulated snow from cables of cable-supported bridges. In addition to the direct damage caused by falling snow, secondary damage, such as traffic accidents, can occur. Various methods have been proposed to prevent these accidents, but there are still problems in safety and practicality. In this study, a cable robot type was selected as one of the active methods for removing accumulated snow on cables. An attempt was made to increase the climbing ability of the robot to improve the efficiency of snow removal. In addition, the available range of cable diameter for the robot can be adjusted flexibly to be applied to cables used in the field. A high-resolution camera was also installed to check the surface condition of the cable in real time to increase the utility, and be used as a cable inspection robot. A three-axis accelerometer and a tension conversion algorithm were added to measure the tension force of cables. To verify the performance, indoor and field experiments were conducted, and future improvements for the inspection robot were proposed.

Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Harmandar, Ebru;Catbas, Necati
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.197-211
    • /
    • 2018
  • The study presents the earthquake performance of the Bosphorus Bridge under multi-point earthquake excitation considering the spatially varying site-specific earthquake motions. The elaborate FE model of the bridge is firstly established depending on the new considerations of the used FEM software specifications, such as cable-sag effect, rigid link and gap elements. The modal analysis showed that singular modes of the deck and the tower were relatively effective in the dynamic behavior of the bridge due to higher total mass participation mass ratio of 80%. The parameters and requirements to be considered in simulation process are determined to generate the spatially varying site-specific ground motions. Total number of twelve simulated ground motions are defined for the multi-support earthquake analysis (Mp-sup). In order to easily implement multi-point earthquake excitation to the bridge, the practice-oriented procedure is summarized. The results demonstrated that the Mp-sup led to high increase in sectional forces of the critical components of the bridge, especially tower base section and tensile force of the main and back stay cables. A close relationship between the dynamic response and the behavior of the bridge under the Mp-sup was also obtained. Consequently, the outcomes from this study underscored the importance of the utilization of the multi-point earthquake analysis and the necessity of considering specifically generated earthquake motions for suspension bridges.

Responses of self-anchored suspension bridge to sudden breakage of hangers

  • Qiu, Wenliang;Jiang, Meng;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.241-255
    • /
    • 2014
  • The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of a concrete self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger has significant effects on tensions of the hangers next to the broken hanger, bending and torsion moments of the girder, moments of the towers and reaction forces of the bearings. The results obtained from dynamic analysis method are very different from those obtained from static analysis method. The maximum tension of hanger produced by breakage of a hanger exceeds 2.2 times of its initial value, the maximum dynamic amplification factor reaches 2.54, which is larger than the value of 2.0 recommended for cable-stayed bridge in PTI codes. If two adjacent hangers on the same side of bridge break one after another, the maximum tension of other hangers exceeds 3.0 times of its initial value. If the safety factor adopted to design hanger is too small, or the hangers have been exposed to corrosion, the bridge may collapse due to breakage of two adjacent hangers.

Cable vibration control with internal and external dampers: Theoretical analysis and field test validation

  • Di, Fangdian;Sun, Limin;Chen, Lin
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • For vibration control of stay cables in cable-stayed bridges, viscous dampers are frequently used, and they are regularly installed between the cable and the bridge deck. In practice, neoprene rubber bushings (or of other types) are also widely installed inside the cable guide pipe, mainly for reducing the bending stresses of the cable near its anchorages. Therefore, it is important to understand the effect of the bushings on the performance of the external damper. Besides, for long cables, external dampers installed at a single position near a cable end can no longer provide enough damping due to the sag effect and the limited installation distance. It is thus of interest to improve cable damping by additionally installing dampers inside the guide pipe. This paper hence studies the combined effects of an external damper and an internal damper (which can also model the bushings) on a stay cable. The internal damper is assumed to be a High Damping Rubber (HDR) damper, and the external damper is considered to be a viscous damper with intrinsic stiffness, and the cable sag is also considered. Both the cases when the two dampers are installed close to one cable end and respectively close to the two cable ends are studied. Asymptotic design formulas are derived for both cases considering that the dampers are close to the cable ends. It is shown that when the two dampers are placed close to different cable ends, their combined damping effects are approximately the sum of their separate contributions, regardless of small cable sag and damper intrinsic stiffness. When the two dampers are installed close to the same end, maximum damping that can be achieved by the external damper is generally degraded, regardless of properties of the HDR damper. Field tests on an existing cable-stayed bridge have further validated the influence of the internal damper on the performance of the external damper. The results suggest that the HDR is optimally placed in the guide pipe of the cable-pylon anchorage when installing viscous dampers at one position is insufficient. When an HDR damper or the bushing has to be installed near the external damper, their combined damping effects need to be evaluated using the presented methods.

Cable Adjustment of Composite Cable Stayed Bridge with Fuzzy Linear Regression Analysis (선형퍼지회귀분석기법을 이용한 합성형 사장교 케이블의 장력보정)

  • Kwon, Jang Sub;Chang, Seung Pil;Cho, Suh Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.579-588
    • /
    • 1997
  • During the construction of cable stayed bridge, errors are always caused by various reasons, accumulated and amplified through the complex construction steps. It is likely that the undesirable stress distribution of members and the large deflection of the bridge different from design values come out The adjustment of cables during construction is absolutely indispensable to correct the stress distribution of the members and the geometrical configuration of the bridge. In the conventional method, weight coefficients are used to consider the difference of units between cable forces and girder deflections during the optimization process of cable adjustment. However, it is not easy to determine weight coefficients and the adjustment must be repeated several times with the time consuming process of the determination of new weight coefficients in case that errors are out of design allowable limits. In this paper, fuzzy linear regression analysis is applied to the cable adjustment to overcome those problems. In the application of fuzzy linear regression analysis method the designer's intention and the design allowable limits can be formulated in the form of the constraints of the linear optimization problem. Therefore, the cable adjustment in construction site can be carried out with the fuzzy linear regression analysis more rapidly than with the convetional method.

  • PDF

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

A Study on the Electric Railroad Grounding System of Tunnels and Bridges (전기철도 시스템에서의 터널, 교량구간 접지방안 연구)

  • 윤응규;오광해;오기봉
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.559-565
    • /
    • 2002
  • This paper presents a standard grounding scheme for bridge and tunnel areas where earthing wires cannot be easily buried. Specially, a new grounding method in which structure grounding devices are used shows good grounding effects like the earthing-wire grounding scheme. The proposed method can be a measure for equal potential in case earthing cables are disconnected.

  • PDF

Cable Tension Force Management Using Vibration Method at Cable Stayed Bridge Construction Stages (진동법을 이용한 사장교 시공단계별 케이블 장력관리)

  • Park, Yeon-Soo;Cheon, Dong-Ho;Cheon, Yang-Bae;Kang, Kyoung-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.127-134
    • /
    • 2005
  • Design and construction of long-span bridge are recently increasing by development of computer technology. Specially, cable stayed bridge and suspension bridge having cable component are representative of long-span bridge may do. Therefore, this paper a present a methodology for cable tension force monitoring in cable-stayed bridge under construction using acceleration data acquired by the vibration method. To improve accuracy construction, all stay cables are measured, according to 4-step construction stage and change of temperature.

Investigation of Potential Fire Hazard Resources of Bridges on National Routes by Field and Web-based Satellite (현장 및 실내조사를 통한 일반국도교량의 화재위험요소 분석)

  • Kim, Yongjae;Kim, Seungwon;Ann, Hojune;Kong, Jungsik;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.105-115
    • /
    • 2017
  • PURPOSES : The occurrence of unexpected disasters, including fire events, increases as the road network becomes complicated and traffic volume increases. When a fire event occurs on and under bridges, the damage extensively influences direct damage to structures, vehicles, and human life and secondary socioeconomic issues owing to traffic blockage. This study investigated potential fire-hazard risks on bridges of the Korean national route road. METHODS : The investigation was conducted using field investigation and analysis with satellite pictures and road views from commercial websites and the Bridge Management System (BMS). From the filed investigation, various potential fire resources were identified. The satellite pictures and road views were helpful in measuring and recognizing conditions underneath bridges, stowage areas, etc. RESULTS : There are various potential fire resources underneath bridges such as piled agricultural products, parked petroleum tanks, construction equipment, and attached high-voltage cables. A total of 94.6% of bridges have underneath clearances of less than 15 m. A bridge underneath volume that can stow a potential fire hazard resource was $7,332m^3$ on average, and most bridges have about $4,000m^3$ of space. Based on the BMS data, the amounts of PSC and steel girders were 29% and 25%, respectively. CONCLUSIONS : It was found that the amount of stowed potential fire hazard resources was proportional to the underneath space of bridges. Most bridges have less than 15 m of vertical clearance that can be considered as a critical value for a bridge fire. The fire risk investigation results should be helpful for developing bridge fire-protection tools.