• 제목/요약/키워드: bridge bearings

Search Result 172, Processing Time 0.033 seconds

The Effects on Structures caused by the Replacement of Bridge Bearing (교량구조물의 받침 교체 효과)

  • Park, Chang-Ho;Ku, Bon-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.209-217
    • /
    • 2002
  • The effects on structures caused by the replacement of the bridge bearings are investigated in this study. The bearings of the bridge are seriously deteriorated because of the breakage of lower concrete and the corrosion of the bearing itself. Also, the negative reaction states are created at some bearings on the abutment. Then, the bridge has occurred excessive vibrations and severe noise and impact whenever heavy trucks pass the above joints. The existing bearings are replaced using the adjustable bearing. The height of the bearings is adjusted to minimize the level difference of above joint and also to induce the appropriate distribution of live loads The effects of replacing the bearings are investigated by measuring the behaviors of the bridge without and with replacing works. The results without replacing the bearing show that the distribution of displacements and stresses is distorted in comparison with the analytical results. Also the bridge without replacing the bearing shows that the impact and vibration from the heavy trucks are larger than those with replacing the bearing. Load carrying capacity of the bridge increase about 1.8 times through replacing the bearing. The above results show that the structural performance of the bridge is improved by replacing only bridge bearings.

Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings

  • Kim, T.H.;Kim, Y.J.;Shin, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.259-278
    • /
    • 2008
  • This paper presents a nonlinear finite element procedure accounting for the effects of geometric as well as material nonlinearities for reinforced concrete bridge piers supported by laminated rubber bearings. Reinforced concrete bridge piers supported by laminated rubber bearings and carrying a cyclic load were analyzed by using a special purpose, nonlinear finite element program, RCAHEST. For reinforced concrete, the proposed robust nonlinear material model captures the salient response characteristics of the bridge piers under cyclic loading conditions and addresses with the influence of geometric nonlinearity on post-peak response of the bridge piers by transformations between local and global systems. Seismic isolator element to predict the behaviors of laminated rubber bearings is also developed. The seismic performance of reinforced concrete bridge piers supported by laminated rubber bearings is assessed analytically. The results show good correlation between the experimental findings and numerical predictions, and demonstrate the reliability and robustness of the proposed analytical model. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of reinforced concrete bridge piers supported by laminated rubber bearings.

A Comparative Study for Performance Evaluation Guidelines of Bridge Bearings (교량받침의 성능평가기준 비교연구)

  • Joh, Chang-Bin;Yoon, Hye-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.917-920
    • /
    • 2006
  • This paper reports a comparative study for performance evaluation guidelines for bridge bearings. Guidelines for bridge bearings such as KS, EN1337, AASHTO LRFD, and Japanese code were analyzed. In addition, fatigue tests of elastomeric bearing are being conducted for allowable shear deformation and compressive stress. Based on literature survey and tests, the innovative concept of performance evaluation guidelines for bridge bearings is suggested.

  • PDF

Effect of various aspects on the seismic performance of a curved bridge with HDR bearings

  • Gupta, Praveen K.;Ghosh, Goutam
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.427-444
    • /
    • 2020
  • The performance of an isolated horizontally curved continuous bridge with High Damping Rubber (HDR) Bearings has been investigated under seismic loading conditions. The effectiveness of response controls of the bridge by HDR bearings for various aspects viz. variation in ground motion characteristics, multi-directional effect, level of earthquake shaking, varying incidence angle, have been determined. Three recorded ground motions, representative of historical earthquakes along with near-field, far-field and forward directivity effects, have been considered in the study. The efficacy of the bearings with bidirectional effect considering interaction behavior of bearing and pier has also been investigated. Modeling and analysis of the bridge have been done by finite element approach. Sensitivity studies of the bridge response with respect to design parameters of the bearings for the considered ground motions have been performed. The importance of the nonlinearity of HDR bearings along with crucial design parameters has been identified. It has been observed that the HDR bearings performed well in different variations of ground motions, especially for controlling torsional moment. However, the deck displacement has been found to be increased significantly in case of Turkey ground motions, considering forward directivity effect, which needs to be paid more attention from designer point of view.

Effect of Pot Bearing Aging on the Seismic Response of a Three-span Continuous Girder Bridge (3경간 연속 거더교의 지진응답에 대한 포트받침 노후화의 영향)

  • Ju Hyeon Jo;Dong Ho Kim;Jun Won Kang;Hyejin Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.251-258
    • /
    • 2024
  • This study investigated the effect of bearing aging on the seismic response of a three-span continuous concrete girder bridge with pot bearings installed. The pot bearings were modeled as elastic springs in the longitudinal, transverse, and vertical directions of the bridge to reflect the stiffness of fixed and movable supports. The effect of bearing aging on the seismic response of the bridge was examined by considering two factors: a decrease in the horizontal stiffness of the fixed bearings and an increase in the horizontal stiffness of the movable bearings. The finite element model of the three-span continuous girder bridge was validated by comparing its numerical natural frequencies with the designed natural frequencies. Using artificial ground motions that conform to the design response spectrum specified by the KDS bridge seismic design code, the seismic responses of the bridge's girders and bearings were calculated, considering the bearing stiffness variation due to aging. The results of a numerical analysis revealed that a decrease in the horizontal stiffness of the fixed bearings led to an increase in the absolute maximum relative displacement of the bearings during an earthquake. This increases the risk of the mortar block that supports the bearing cracking and the anchor bolt breaking. However, an increase in the horizontal stiffness of the movable bearings due to aging decreased the absolute maximum shear on the fixed bearings. Despite the shear reduction in the fixed bearings, the aging of the pot bearings change could cause additional tensile bending stress in the girder section above the free bearings, which could lead to unexpected structural damage to the continuous bridge during an earthquake.

Seismic response analysis of isolated offshore bridge with friction sliding bearings

  • Wang, Baofu;Han, Qiang;Jia, Junfeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.641-654
    • /
    • 2019
  • This paper investigates the seismic response of a typical non-navigable continuous girder bridge isolated with friction sliding bearings of the Hong Kong-Zhuhai-Macao link projects in China. The effectiveness of the friction pendulum system (FPS) and accuracy of the numerical model were evaluated by a 1/20 scaled bridge model using shaking table tests. Based on the hysteretic properties of friction pendulum system (FPS), double concave friction pendulum (DCFP), and triple friction pendulum system (TFPS), seismic response analyses of isolated bridges with the three sliding-type bearings are systematically carried out considering soil-pile interaction under offshore soft clay conditions. The fast nonlinear analysis (FNA) method and response spectrum are employed to investigate the seismic response of isolated offshore bridge structures. The numerical results show that the implementation of the three sliding-type bearings effectively reduce the base shear and bending moment of the reinforced concrete pier, at the cost of increasing the absolute displacement of the bridge superstructure. Furthermore, the TFPS and DCFP bearings show better isolation effect than FPS bearing for the example continuous girder bridge.

Behavior of Bridge Bearings for Railway Bridges under Running Vehicle

  • Choi, Eun-Soo;Yu, Wan-Dong;Kim, Jin-Ho;Park, Sun-Hee
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.10-21
    • /
    • 2012
  • Open steel plate girder (OPSG) bridges are the most prevalent railroad bridge type in Korea, constituting about 40% of all railroad bridges. Solid steel bearings, known as line type bearings, are placed in most OSPG railway bridges. However, the line type rigid bearings generate several problems with the bridge's dynamic behavior and maintenance in service. To compare and investigate the dynamic behaviors of line type, spherical and disk bearings, the vertical displacements of each bearing, including fixed and expansion type, under running vehicles are measured and analyzed. The displacements of disk and spherical bearings are measured after replacing the line type bearings with spherical and disk bearings. This study also analyzed dynamic behaviors of bridges. Furthermore, the deformation of the PTFE (Polytetrafluoroethylene) plate that is placed inside of expansion type spherical and disk bearings is measured and its effect on the dynamic behavior of the bridges is discussed. The up-lift phenomenon at the bearings installed for the steel bridges is estimated. The vertical displacements at mid-span of the bridges are compared according to the bearing types. Finally, the 1st mode natural frequencies are estimated, and the relationship to the vertical displacement is discussed.

Characteristics and Replacement of Separated Spherical Bridge Bearings (분리형 스페리칼 교량받침의 특징 및 교체실험)

  • Park, Sung-Woo;Liu, Syung-Kyu;Choi, Eun-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1729-1734
    • /
    • 2008
  • This study developed a new separated shperical bridge bearing that can be used for replacement of existing bridge bearings without crushing bearing-concrete. The separated spherical bearing have the upper and lower sole plate connected by bolts to the upper plate under bridge-girders and the lower plate on bearing-concrete. The targets of the separated spherical bearing are the maximum 3 mm of up-lifting height during replacement and the maximum required time of 30 minutes. Four separated spherical bearings are manufactured and replaced the existing bearings of a railway bridge in service and the replacing tests was performed. The number of the tests is two and the target of maximum 3 mm and 30 minutes was satisfied.

  • PDF

Maintenance and Dynamic Behavior of Spherical Bearings under Railway Open-Steel-Plate-Girder Bridges (철도 판형교에서 스페리칼받침의 유지보수 및 동적 거동)

  • Choi, Eun-Soo;Oh, Ja-Tae;Kim, Hyun-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1450-1459
    • /
    • 2007
  • Line type rigid bearings for Open-Steel-Plate-Girder railway bridges have several problem in service, and they are unstable structurally. Thus, spherical bearings having advanced maintenance capability and device to resistance up-lift are developed and replace the existing ones. A experiment of maintenance for a new placed spherical bearings under real Open-Steel-Plate-Girder bridge is conducted and their good maintenance performance is proved. The dynamic behavior of the bridge is measured and analyzed for the two cases of the existing and replacing bearings. Therefore, the effect of the new spherical bearings on the railway bridge is assessed.

  • PDF

Seismic Behavior Analyses of a Bridge Considering Damage of Bearings (받침부 손상을 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.454-461
    • /
    • 2001
  • Dynamic responses of a multi-span simply supported bridge are examined under seismic excitations considering damage of bearings. An idealized mechanical model which can consider components such as pounding, friction at the supports, abutment-soil interaction, rotational and translational motions of foundations, and the nonlinear pier motions, is developed to analyze the effects due to damage of bearings. It is assumed that the bearing's response after failure can be expressed with a sliding model with a friction coefficient between the superstructure and the pier top. It is found that the global seismic behaviors are significantly influenced by the damage of bearings and the damage of bearings may lead to unseating failure at unpredicted supports. Therefore, It can be concluded that detailed seismic response analyses of bridge systems considering damage of bearings is required for the purpose of the seismic safety evaluation.

  • PDF