• Title/Summary/Keyword: bridge assessment

Search Result 608, Processing Time 0.03 seconds

Monitoring and performance assessment of a highway bridge via operational modal analysis

  • Reza Akbari;Saeed Maadani;Shahrokh Maalek
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.191-205
    • /
    • 2023
  • In this paper, through operational modal analysis and ambient vibration tests, the dynamic characteristics of a multi-span simply-supported reinforced concrete highway bridge deck was determined and the results were used to assess the quality of construction of the individual spans. Supporting finite element (FE) models were created and analyzed according to the design drawings. After carrying out the dynamic tests and extracting the modal properties of the deck, the quality of construction was relatively assessed by comparing the results obtained from all the tests from the individual spans and the FE results. A comparison of the test results among the different spans showed a maximum difference value of around 9.3 percent between the superstructure's natural frequencies. These minor differences besides the obtained values of modal damping ratios, in which the differences were not more than 5 percent, can be resulted from suitable performance, health, and acceptable construction quality of the bridge.

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

Post earthquake performance monitoring of a typical highway overpass bridge

  • Iranmanesh, A.;Bassam, A.;Ansari, F.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • Bridges form crucial links in the transportation network especially in high seismic risk regions. This research aims to provide a quantitative methodology for post-earthquake performance evaluation of the bridges. The experimental portion of the research involved shake table tests of a 4-span bridge which was subjected to progressively increasing amplitudes of seismic motions recorded from the Northridge earthquake. As part of this project, a high resolution long gauge fiber optic displacement sensor was developed for post-seismic evaluation of damage in the columns of the bridge. The nonlinear finite element model was developed using Opensees program to simulate the response of the bridge and the abutments to the seismic loads. The model was modified to predict the bent displacements of the bridge commensurate with the measured bent displacements obtained from experimental analysis results. Following seismic events, the tangential stiffness matrix of the whole structure is reduced due to reduction in structural strength. The nonlinear static push over analysis using current damaged stiffness matrix provides the longitudinal and transverse ultimate capacities of the bridge. Capacity loss in the transverse and longitudinal directions following the seismic events was correlated to the maximum displacements of the deck recorded during the events.

Performance Assessment of Hollow Precast Segmental Bridge Columns with Reinforcement Details for Material Quantity Reduction (조립식 물량저감 중공 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon;Park, Dong-Kyu;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • This study investigates the performance of hollow precast segmental bridge columns with reinforcement details for material quantity reduction. The proposed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. The precast segmental bridge columns provides an alternative to current cast-in-place systems. We tested a model of hollow precast segmental bridge columns under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for hollow precast segmental bridge column specimens investigated. As a result, proposed reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.

Bridge Design for a pedestrian of Eunpa amusement park in Kunsan (군산 은파유원지 보행자 전용 미관교량 설계)

  • Kim, Byung-Ok;Lee, Sang-Rok
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.161-170
    • /
    • 2005
  • This research is an analysis of the working plan, to build a pedestrian bridge for Eunpa amusement park in Kunsan, South Korea. This research takes into consideration the need of harmony with the surrounding area as well as the assessment of the activity of people on the pedestrian bridge. This research finds that it is possible for an efficient method to understand the interaction between humans and movement in this space. Another research objective is to understand human interaction and the relationship with the local scenery through a study of the scale and form of the bridge, the form of the main tower, and various subsidiary facilities in the space studied too. This research is to be an attempt to access a new way to approach bridge design and with the hope for the revitalization of the site.

  • PDF

An Application of GIS to Water Quality Management (GIS를 이용한 하천수질관리)

  • Yang, Hyung-Jae;Lee, Yoo-Won;Kim, Min
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.25-32
    • /
    • 1994
  • This study was carried out as the Anyang creek water quality management using Geographic Information System (GIS) is the purpose of this pilot project to apply a GIS to environmental management field. Analysis of water quality data has been investigated using GIS with modeling of water quality management for the Anyang creek. The results of this study are summarized as follows: 1. The concentration of Mercury in sediment was increased rapidly nearby A26(Nightsoil Treatment Plant) and maximum was showed at A18 (Imgok bridge). Cadmium was increased rapidly at A35(Chulsan bridge). 2. River water quality management using visible computer system as GIS is effective to make decision for water quality management plan and database of environmental factors should be completed before applying GIS. 3. When water pollution accident is occurred in the river water system, pollutant source can be traced and analysed systematically using GIS to manage pollutants discharged into the river water system.

  • PDF

Ecological Case Study of Eco-bridges in Korea: State and Problem (야생동물 생태학적 사례연구를 통해서 본 교량형 생태통로의 현황 및 문제점)

  • Choi, Byung-Jin;Jo, Yeong-Seok;Jeong, Jong-Chul;Kim, Joo-Pill
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.4
    • /
    • pp.285-300
    • /
    • 2007
  • The purpose of this study was to ascertain the ecological state and problems of eco-bridges on Korean roads. The study was conducted from March to April 2007 by checking ecological factors and wildlife around the eco-bridges and habitats. 8 representative eco-bridges were selected by their bridge shape and condition of location. After field survey, we analyzed ideal trails for wildlife using field data, digital topology maps, satellite images, and land use map. In addition to trail analysis, we identified the propriety of the eco-bridges through Population Viability Analysis. Because of unsuitable location and management, we found that most of the bridges are not proper for wildlife dispersal. Moreover, in some habitats, we could expect that some local populations might be extinct without appropriate treatments.

Effective Approaches for Structural Health Monitoring of Bridges (교량의 건전성 모니터링을 위한 효율적인 접근방법)

  • Jong-Jae, Lee;Chung-Bang, Yun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.135-142
    • /
    • 2004
  • Two-step identification approach for effective bridge health monitoring is proposed to alleviate the issues associated with many unknown parameters faced in the real structures and to improve the accuracy in the estimate results. It is suitable for on-line monitoring scheme, since the damage assessment is not always needed to be carried out whereas the alarming for damages is to be continuously monitored. In the first step for screening potential damaged members, damage indicator method based on modal strain energy, probabilistic neural networks and the conventional neural networks using grouping technique are used and then the conventional neural network technique is utilized for damage assessment on the screened members in the second step. The proposed methods are verified through a field test on the northern-most span of old Hannam Grand Bridge.

  • PDF

Probabilistic Prediction of Structural Performance for Rational Bridge Management Policy (합리적 교량유지관리 의사결정을 위한 구조성능의 추계학적 예측)

  • Oh, Byung-Hwan;Kim, Dong-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.185-193
    • /
    • 2004
  • Reasonable prediction of bridge deterioration is the most important factor in the determination of repair time or optimized maintenance policy for bridges. To accomplish these purposes, the proposed method is composed of quantitative condition assessment, Markov chains and Bayesian estimates. Example predictions of concrete slab bridges in Korea were illustrated with higher reasonability than those of existing methods such as expert opinion and visual inspection only.

Damage Effects on the Natural Frequency of Concrete Pier (구체손상에 따른 콘크리트 교각의 고유진동수 변화)

  • Park, Byung-Cheal;Oh, Keum-Ho;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.335-338
    • /
    • 2005
  • This study was performed to verify that the impact vibration test on the damaged concrete pier can be adopted for assessment of the bridge substructure integrity. Using the experimental modal analysis, the dynamic property changes of the concrete pier are investigated according to the damage levels which are modeled by the loss of cross section area of the pier body. As a result of the impact vibration test, it is found that the natural frequency of the bridge substructure is reduced due to the damage on the pier such as loss of cross section area, and the natural frequency can be used for assessment of the integrity index.

  • PDF