• Title/Summary/Keyword: bridge aerodynamics flow control

Search Result 2, Processing Time 0.018 seconds

Application of a discrete vortex method for the analysis of suspension bridge deck sections

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.333-352
    • /
    • 2001
  • A two dimensional discrete vortex method (DIVEX) has been developed to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The predictions for the static section demonstrate that the method captures the character of the flow field at different angles of incidence. In addition, flutter derivatives are obtained from simulations of the flow field around the section undergoing vertical and torsional oscillatory motion. The subsequent predictions of the critical flutter velocity compare well with those from both experiment and other computations. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results from DIVEX are shown to be in accordance with previous analytical and experimental studies. In conclusion, the results indicate that DIVEX is a very useful design tool in the field of wind engineering.

Aeroelastic stability analysis of a bridge deck with added vanes using a discrete vortex method

  • Taylor, I.;Vezza, M.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.277-290
    • /
    • 2002
  • A two dimensional discrete vortex method (DIVEX) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The results from both the static and flutter analysis of the main deck in isolation are in good agreement with experimental data. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results confirm previous analytical and experimental studies. The aeroelastic study is carried out firstly using aerodynamic derivatives extracted from the DIVEX simulations. These results are then assessed further by presenting results from full time-dependent aeroelastic solutions for the original deck and one of the vane cases. In general, the results show good qualitative and quantitative agreement with results from experimental data and demonstrate that DIVEX is a useful design tool in the field of wind engineering.