• Title/Summary/Keyword: breeding population

Search Result 722, Processing Time 0.043 seconds

Genetic diversity and population structure of indigenous chicken of Bangladesh using microsatellite markers

  • Rashid, Muhammad Abdur;Manjula, Prabuddha;Faruque, Shakila;Bhuiyan, A.K. Fazlul Haque;Seo, Dongwon;Alam, Jahangir;Lee, Jun Heon;Bhuiyan, Mohammad Shamsul Alam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1732-1740
    • /
    • 2020
  • Objective: The objectives of this study were to investigate the genetic diversity, population structure and relatedness among the five chicken populations of Bangladesh using microsatellite markers. Methods: A total of 161 individuals representing 5 chicken populations (non-descript Deshi [ND], naked neck [NN], hilly [HI], Aseel [AS], and red jungle fowl [JF]) were included in this study to investigate genetic diversity measures, population structure, genetic distance and phylogenetic relationships. Genotyping was performed using 16 selected polymorphic microsatellite markers distributed across 10 chromosomes. Results: The average observed and expected heterozygosity, mean number of alleles and polymorphic information content were found to be 0.67±0.01, 0.70±0.01, 10.7 and 0.748, respectively in the studied populations. The estimated overall fixation index across the loci (F), heterozygote deficiency within (FIS) and among (FIT) chicken populations were 0.04±0.02, 0.05 and 0.16, respectively. Analysis of molecular variance analysis revealed 88.07% of the total genetic diversity was accounted for within population variation and the rest 11.93% was incurred with population differentiation (FST). The highest pairwise genetic distance (0.154) was found between ND and AS while the lowest distance was between JF and AS (0.084). Structure analysis depicted that the studied samples can be categorized into four distinct types or varieties (ΔK = 3.74) such as ND, NN, and HI where AS and JF clustered together as an admixed population. The Neighbor-Joining phylogenetic tree and discriminant analysis of principal component also showed close relatedness among three chicken varieties namely AS, HI, and JF. Conclusion: The results reflected that indigenous chicken of Bangladesh still possess rich genetic diversity but weak differentiation among the studied populations. This finding provides some important insight on genetic diversity measures that could support the designing and implementing of future breeding plans for indigenous chickens of Bangladesh.

The Status of Seabirds in Korea and Environmental Monitoring Methods using Seabirds

  • Kim, Mi-Ran;Lee, Won-Choel;Zubrzycki, Igor Z.
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.113-125
    • /
    • 2011
  • Seabirds have adapted to life in marine environments. More than 25% of the bird species observed in South Korea are seabirds, using the coast area of Korean peninsula as a stop-over and wintering, and breeding site. The aims of this review are to provide information about migratory and resident Korean seabirds and to discuss the methods that are currently employed to monitor the marine environment. In Korea, it has been reported that more than 400,000 individuals of seabirds breed on Nando Islet, Chilbaldo Islet, Guguldo Islet, Sasudo Islet, Hongdo Islet and Dokdo Islet. In 2010, approximately 160,000 seabirds also visited South Korea during the winter. Two of the main treats were introduced wildlife and habitat destruction by humans. Seabirds are monitored mainly at the population and individual levels. The assessment of population sizes and biomagnifications of pollutants are performed preferably at the community and population levels. Behaviour, growth, morphological characteristics, and breeding success is analyzed at the individual level and employed to gauge the health of the marine environment. In addition, we could suggest that molecular technique of seabirds successfully adopted to investigate the effects of pollutants and toxins in the marine environment.

Development of a Segregating Population with Biological Efficiency in Agaricus bisporus

  • Oh, Youn-Lee;Sonnenberg, Anton S.M.;Baars, Johan J.P.;Jang, Kab-Yeul;Oh, Min ji;Im, Ji-Hoon;Kong, Won-Sik
    • The Korean Journal of Mycology
    • /
    • v.45 no.4
    • /
    • pp.328-335
    • /
    • 2017
  • In this study, we made a population with high biological efficiency (BE) to investigate the complex genetic architecture of yield-related traits in Agaricus bisporus. MB-013 crossed between bisp 015-p2 and bisp 034-p2, had high BE. Additionally MB-013 was an intervarietal hybrid that intercrosses with A. bisporus var. burnettii, bisp 015, and A. bisporus var. bisporus, bisp 034. One hundred and seventy homokaryons were selected using the cleaved amplified polymorphic sequence (CAPS) markers (PIN primer/HaeIII) from 300 single spore isolates (SSIs). One hundred $BC_1F_1$ hybrids were obtained by crossing the homokaryons of MB-013 with bisp15-p1. The population of 100 BC1F1 hybrids is suitable for analyses of BE.

Implementation of genomic selection in Hanwoo breeding program (유전체정보활용 한우개량효율 증진)

  • Lee, Seung Hwan;Cho, Yong Min;Lee, Jun Heon;Oh, Seong Jong
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.397-406
    • /
    • 2015
  • Quantitative traits are mostly controlled by a large number of genes. Some of these genes tend to have a large effect on quantitative traits in cattle and are known as major genes primarily located at quantitative trait loci (QTL). The genetic merit of animals can be estimated by genomic selection, which uses genome-wide SNP panels and statistical methods that capture the effects of large numbers of SNPs simultaneously. In practice, the accuracy of genomic predictions will depend on the size and structure of reference and training population, the effective population size, the density of marker and the genetic architecture of the traits such as number of loci affecting the traits and distribution of their effects. In this review, we focus on the structure of Hanwoo reference and training population in terms of accuracy of genomic prediction and we then discuss of genetic architecture of intramuscular fat(IMF) and marbling score(MS) to estimate genomic breeding value in real small size of reference population.

Genetic Analysis of Pod Dehiscence in Soybean

  • Kang Sung Taeg;Kim Hyeun Kyeung;Baek In Youl;Chung Moung Gun;Han Won Young;Shin Doo Chull;Lee Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.281-285
    • /
    • 2005
  • Pod dehiscence (PD), defined as the opening of pods along both the dorsal and ventral sutures, causes the seed to shatter in the field before harvesting and results in loss of seed yields. However, breeding for resistance to PD is difficult due to the complicated genetic behavior and environmental interaction. The objective of the present research was to analyze the genetic behavior of PD for improving the breeding efficiency of resistance to PD in soybean. PD after oven-drying the sampled pod at $40^{\circ}C$ for 24 hours was the most reliable to predict the degree of PD tested in the field. Keunolkong, a dehiscent parent, was crossed with non-dehiscent parents, Sinpaldalkong and Iksan 10. Using their $F_1\;and\;F_2$ seeds, PD was measured after oven drying the pod at $40^{\circ}C$ for 24 hours. The gene conferring PD behaved in different manners depending on the genetic populations. In the Keunolkong$\times$Sinpaldalkong population, PD seemed to be governed by single major recessive gene and minor genes, while several genes were probably involved in the resistance to pod dehiscence in the Keunolkong$\times$Iksan 10 population. Heritability for PD estimated in F2 population showed over $90\%$ in the two populations. High heritability of PD indicated that selection for resistance to PD should be effective in a breeding program. In addition, genetic mapping of quantitative locus (QTL) for PD in both populations may reveal that genes conferring PD are population-specific.

Development of SSR Markers and Their Use in Studying Genetic Diversity and Population of Finger Millet (Eleusine coracana L. Gaertn.)

  • Lee, Kyung Jun;Yoon, Mun-Sup;Shin, Myoung-Jae;Lee, Jung-Ro;Cho, Yang-Hee;Lee, Ho-Sun;Ma, Kyung-Ho;Lee, Gi-An
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • Finger millet (Eleusine coracana L. Gaertn.) is an important cereal crop in eastern Africa and southern India with excellent grain storage capacity and the unique ability to thrive in extreme environmental conditions. In this study, we analyzed the genetic diversity and population structure of finger millet using 12 developed microsatellites. By sequencing 815 clones from an SSR-enriched genomic DNA library, we obtained 12 polymorphic SSR markers, which also revealed successful amplicons in finger millet accessions. Using the developed SSR markers, we estimated genetic diversity and population structure among 76 finger millet accessions in Asia, Africa, and unknown origins. The number of alleles ranged from 2 to 9, with an average of 3.3 alleles. The mean values of observed heterozygosity and expected heterozygosity were 0.27 and 0.35, respectively. The average polymorphism information content was 0.301 in all 76 finger millet accessions. AMOVA analysis showed that the percentage of molecular variance among the populations was 1%, that among individuals was 5%, and that within individuals was 94%. In STRUCTURE analysis, the 76 finger millet accessions were divided into two subpopulations which had an admixture of alleles. There was a correspondence among PCoA, AMOVA, and population structure. This study may form the basis for a finger millet breeding and improvement program.

A TILLING Rice Population Induced by Gamma-ray Irradiation and its Genetic Diversity

  • Cho, Hyun Yong;Park, Seo Jung;Kim, Dong Sub;Jang, Cheol Seong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.365-373
    • /
    • 2010
  • TILLING (Targeting Induced Local Lesions IN Genomes) is broadly regarded as an excellent methodology for reverse genetics applications. Approximately 15,000 $M_3$ TILLING lines have been developed via the application of gamma-ray irradiation to rice seeds (cv. Donganbyeo), followed by subsequent selections. In an effort to evaluate the genetic diversity of the TILLING population, we have employed the AFLP multiple dominant marker technique. A total of 96 (0.64%) TILLING lines as well as Donganbyeo were selected randomly and their genetic diversity was assessed based on AFLP marker polymorphisms using 5 primer combinations. An average of 100.4 loci in a range of 97 to 106 was detected using these primer combinations, yielding a total of 158 (31.4%) polymorphic loci between Donganbyeo and each of the 96 lines. A broad range of similarity from 80% to 96% with an average of 89.4% between Donganbyeo and each of the 96 lines was also observed, reflecting the genetic diversity of the TILLING population. Approximately 28 polymorphic loci have been cloned and their sequences were BLAST-searched against rice whole genome sequences, resulting in 20 matches to each of the gene bodies including exon, intron, 1 kb upstream and 1 kb downstream regions. Six polymorphic loci evidenced changes in the coding regions of genes as compared to the rice pseudomolecules, 4 loci of which exhibited missense mutations and 2 loci of which exhibited silent mutations. Therefore, the results of our study show that the TILLING rice population should prove to be a useful genetic material pool for functional genomics as well as mutation breeding applications.

Dairy goat production in sub-Saharan Africa: current status, constraints and prospects for research and development

  • Kahi, Alexander K.;Wasike, Chrilukovian B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1266-1274
    • /
    • 2019
  • This paper presents a review of dairy goat production in sub-Saharan Africa (SSA) from 2010- 2017, its current state, constraints and prospects for research and development. Since the introduction of dairy goats in SSA in pre-colonial times, their populations have continued to increase due to declining land size as a result of land fragmentation and increasing demand for goat milk. The current goat population in SSA is 372,716,040 head of which only 15.98% used for milk production. Populations in the Eastern and Western regions of SSA have shown an increasing trend from 2010 to 2017. The Southern Africa goat population is on the decline at an annual rate of about 1.77% whereas Central Africa has had a constant goat population within the same period. Eastern Africa reported the highest increase in the population of goats used for milk production. Milk production was highest in Eastern Africa and lowest in Southern Africa. However, dairy goat productivity remained constant in the Eastern region throughout the review period. Dairy goats are mainly raised under smallholder mixed crop-livestock systems. To enhance the development of the dairy goat, concerted efforts should be made to alleviate the constraints that stifle its growth. These constraints can be categorized into nutrition and feeding, breeding and reproduction, diseases, parasites, climate change, and underdeveloped dairy goat products market. Effective management of dairy goats requires a holistic approach and there is the need to expand the markets by further sensitization on the nutritional and medicinal advantages of dairy goat products. In order to achieve rapid development in the dairy goat sub sector, research and development initiatives should be directed towards alleviating the hurdles in nutrition and feeding, breeding, animal health and resilience as well as dairy goat markets.

The Prediction Ability of Genomic Selection in the Wheat Core Collection

  • Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.235-235
    • /
    • 2022
  • Genome selection is a promising tool for plant and animal breeding, which uses genome-wide molecular marker data to capture large and small effect quantitative trait loci and predict the genetic value of selection candidates. Genomic selection has been shown previously to have higher prediction accuracies than conventional marker-assisted selection (MAS) for quantitative traits. In this study, the prediction accuracy of 10 agricultural traits in the wheat core group with 567 points was compared. We used a cross-validation approach to train and validate prediction accuracy to evaluate the effects of training population size and training model.As for the prediction accuracy according to the model, the prediction accuracy of 0.4 or more was evaluated except for the SVN model among the 6 models (GBLUP, LASSO, BayseA, RKHS, SVN, RF) used in most all traits. For traits such as days to heading and days to maturity, the prediction accuracy was very high, over 0.8. As for the prediction accuracy according to the training group, the prediction accuracy increased as the number of training groups increased in all traits. It was confirmed that the prediction accuracy was different in the training population according to the genetic composition regardless of the number. All training models were verified through 5-fold cross-validation. To verify the prediction ability of the training population of the wheat core collection, we compared the actual phenotype and genomic estimated breeding value using 35 breeding population. In fact, out of 10 individuals with the fastest days to heading, 5 individuals were selected through genomic selection, and 6 individuals were selected through genomic selection out of the 10 individuals with the slowest days to heading. Therefore, we confirmed the possibility of selecting individuals according to traits with only the genotype for a shorter period of time through genomic selection.

  • PDF