• Title/Summary/Keyword: breakup

Search Result 375, Processing Time 0.034 seconds

A Breakup Mechanism of Liquid Impinging Jet (I) (충돌분무에 의한 분열현상 (I))

  • 이충원;석명수;석지권
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.16-16
    • /
    • 1998
  • 로켓의 추진제에는 고체 추진제와 액체 추진제를 사용하는 두 경우로 나눌 수 있는데, 액체 추진제를 사용하는 경우, 액체 연료와 액체 산화제를 다양한 방법으로 연소실내로 분사하게 된다. 이때 사용되는 injector들 중에 impingement type이 있다. 이 type은 injector의 가공이 비교적 용이하고, 혼합성능이 좋기 때문에 LOX/RP-1(Kerosin-based hydrocarbon fuel)을 사용하는 액체 로켓엔진에서 주로 사용되어 왔다. 두 액체 jet의 충돌에 의해 액막이 형성되는데, 이 액막은 가장자리로 갈수록 두께가 얇아지며 액막표면의 파는 충돌점으로부터 멀어질수록 그 진폭의 증가를 이루어 액체의 표면장력과 관성력의 균형을 깨트리며, 이 순간 액막은 rim의 형태로 분열하여 결국에는 액적을 생성하게 된다. 현재까지의 연구내용은 충돌 jet의 형태 laminar jet과 turbulent jet으로 구분된 인젝트에 관해 연구되어왔고, 특히 국내에는 이러한 구분된 충돌 jet의 분열현상에 관한 연구결과가 미흡하다. 동일한 오르피스의 경우에도 laminar jet과 turbulent jet으로 구분되어 지며, 각각의 jet의 형태에 따라 생성되는 액막의 형상 또는 다르게 생성되어 진다. 그러므로 본 연구에서는 두 구분된 jet의 경우의 분열현상을 실험적으로 분석하였다.

  • PDF

Hexane Vapor Concentration Measurement of a Liquid Jet in Crossflow (수직분사제트에서의 헥산 증기농도측정)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.383-389
    • /
    • 2010
  • The vapor concentration of hexane in a liquid spray jet in crossflow was qualitatively measured on the basis of the infrared (IR) extinction techniques. The objectives of the present study are to understand the whole evaporation process from droplet breakup to vapor and to confirm the usefulness of IR emission method in a lab-scale ramjet combustor. From the experimental results, we concluded that hexane vapor mole fraction increased with temperature rise and kept nearly constant during the variation of fuel to air momentum ratio.

  • PDF

Backlight image of liquid nitrogen jet at supercritical state (초임계에서 액체 질소 분류의 역광 사진)

  • Lee, Hyunchang;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.709-712
    • /
    • 2017
  • Liquid nitrogen jet has been imaged by using backlight method. In addition to the images, simultaneously measured temperature by thermocouples has been used to investigate the role of 'Pseudo-flash-boiling' in breakup of the supercritical jet. The backlight image can provide qualitative appearance of the jet, but not the density profile for the high density of injected fluid.

  • PDF

Experimental Study on the Flow Characteristic of a Confined Ppray (제한된 공간내 분무의 유동특성 실험)

  • 정선재;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.1011-1018
    • /
    • 1992
  • A series of experiment has been performed on the spray characteristics in a cylindrical confined space with the injection pressure taken as a parameter. By using a single-hole patternator and the Malvern particle sizer, the spray mass flux, drop size and volume concentration distributions along the radial and axial directions were obtained ; the line-of- sight data by Malvern particle sizer have been converted to the ring-of-sight data by using the tomographical transformation techniqe. The experimental results show that, due to the restriction on the ambient gas entrainment by the wall boundary, the effective spray angle is increasing. The spray drops were measured to be smaller in the confined space because of a large number of floating small drops by recirculation of the gas phase and the breakup of large drops by the wall collision. Also the details on the flow behavior of the confined spray are discussed.

Calculation of the internal flow in a fuel nozzle (연료노즐 내부유동 현상의 수치해석)

  • Gu, Ja-Ye;Park, Jang-Hyeok;O, Du-Seok;Jeong, Hong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1971-1982
    • /
    • 1996
  • The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exit the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculation of the internal flow in a single hole type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and up-stream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle position. The diesel nozzle with sharp inlet under actual engine condition has possibility of cavitation, but round inlet nozzle has no possibility of cavitation.

Numerical Analysis on Liquid Jet Breakup Process in Pinch Off

  • Inoue, Chihiro;Watanabe, Toshinori;Himeno, Takehiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.371-377
    • /
    • 2008
  • In order to obtain fundamental knowledge of atomization, the three dimensional unsteady phenomenon of pinch off was numerically studied by developed method. Not only liquid shapes but also velocity distributions of numerical results were compared with corresponding experimental ones. They showed satisfactorily good agreement at least in a qualitative sense. The liquid jet shapes, the pressure and velocity distributions, and the inner flow structures were clarified through the comparisons of distinctly different flow fields due to presence or absence of surface tension. The condition of pinch off, which had close correlation with fluid acceleration at injection, was clearly specified.

  • PDF

Hexane Vapor Concentration Measurement of a Liquid Jet in Crossflow (수직분사제트에서의 헥산 증기농도측정)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.25-31
    • /
    • 2010
  • The vapor concentration of hexane in a liquid spray jet in crossflow was qualitatively measured on the basis of the infrared (IR) extinction techniques. The objectives of the present study are to understand the whole evaporation process from droplet breakup to vapor and to confirm the usefulness of IR emission method in a lab-scale ramjet combustor. From the experimental results, we concluded that hexane vapor mole fraction increased with temperature rise and kept nearly constant during the variation of fuel to air momentum ratio.

A study on the characterization of open-type swirl injector (오픈형 압력 스월 분무의 특성 측정에 관한 연구)

  • Song, Da Hun;Lee, Hyunchang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 2021
  • In this experimental study, measurement techniques such as backlight imaging, optical patternator, and laser sheet drop sizing were applied to characterize open-type swirl injector used in Russian liquid rocket engine, RD 107. The typical development of swirl spray was observed in backlight images. The breakup length was measured by using the ratio between Mie scattering and fluorescence signal. Relative Sauter Mean Diameter was measured by using laser sheet drop sizing and the possible source of errors were discussed.

MERGING AND FRAGMENTATION IN THE SOLAR ACTIVE REGION 10930 CAUSED BY AN EMERGING MAGNETIC FLUX TUBE WITH ASYMMETRIC FIELD-LINE TWIST DISTRIBUTION ALONG ITS AXIS

  • Magara, Tetsuya
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.89-97
    • /
    • 2019
  • We demonstrate the subsurface origin of the observed evolution of the solar active region 10930 (AR10930) associated with merging and breakup of magnetic polarity regions at the solar surface. We performed a magnetohydrodynamic simulation of an emerging magnetic flux tube whose field-line twist is asymmetrically distributed along its axis, which is a key to merging and fragmentation in this active region. While emerging into the surface, the flux tube is subjected to partial splitting of its weakly twisted portion, forming separate polarity regions at the solar surface. As emergence proceeds, these separate polarity regions start to merge and then break up, while in the corona sigmoidal structures form and a solar eruption occurs. We discuss what physical processes could be involved in the characteristic evolution of an active region magnetic field that leads to the formation of a sunspot surrounded by satellite polarity regions.

Subsurface origin of merging and fragmentation in AR10930

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2019
  • The aim of this study is to demonstrate the subsurface origin of the complex observed evolution of the solar active region 10930 (AR10930) associated with merging and breakup of magnetic polarity regions at the solar surface. This is important for a comprehensive understanding of observed properties of the active region, because subsurface magnetic flux and subsurface dynamical processes are seamlessly connected to surface magnetic flux and surface dynamical processes, respectively. In other words, the solar surface does not behave as an impermeable boundary towards magnetic flux and dynamical processes. In this talk, we show a magnetohydrodynamic (MHD) model of merging and fragmentation in AR10930. We then discuss what physical processes could be involved in the characteristic evolution of an active region magnetic field that leads to the formation of a sunspot surrounded by satellite polarity regions.

  • PDF