• Title/Summary/Keyword: breakup

Search Result 375, Processing Time 0.031 seconds

Effects of Propellant Phases on Atmospheric Spray Characteristics of a Pintle Injector for Throttleable Rocket Engines (가변 추력용 핀틀 분사기에서 추진제 상에 따른 상압분무 특성)

  • Yu, Kijeong;Son, Min;Radhakrishnan, Kanmaniraja;Kim, Heuy Dong;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Atmospheric spray characteristics were experimentally compared between liquid-gas and liquid-liquid sprays of a pintle injector. In order to study spray characteristics, water and air were used as the simulants and the visualization technic was adopted. Spray images were acquired by using a backlight method by a high-resolution CMOS camera. As a result, when the pintle opening distance increased, liquid sheets became unstabled and fluttering droplets increased. In the liquid-gas case, the breakup performance increased as the pressure of gas injected from the annular orifice increased. In the liquid-liquid case, atomization efficiency decreased as the pressure of liquid injected from the annular orifice increased. Spray angles presented a similar trend between two cases. At the same momentum ratio, the spray angle of liquid-liquid case was lower than the angle of liquid-gas case.

Behavior of Impinging Droplet on a Solid Surface for the Variation of Fuel Temperature (연료 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구)

  • Lee, Dong-Jo;Kim, Ho-Yong;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.167-173
    • /
    • 2003
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various fuels with different properties. The fuel temperature and incident angle were chosen as major parameters. And fuel temperature and incident angle varied in the range from $-20^{\circ}C$ to $30^{\circ}C$ and from $30^{\circ}$ to $60^{\circ}$, respectively, were investigated. It was found that the variation of fuel temperature influences upon droplet mean diameter which were bounced out from the solid surface. As the increases of incident angle, the break-out mass flow rate increases. This causes the decrease of liquid film flow rate. The larger incident angle gives less liquid film flow rate.

  • PDF

Numerical Study of Ignition and Combustion Process of a Diesel Spray (Diesel spray의 점화와 연소 특성 해석)

  • 김용모;권영동;김후중;김세원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.15-26
    • /
    • 1997
  • The present study is mainly motivated to numerically simulate the autoignition and combustion process of a diesel spray in RCM and effects of design parameters on combustion and engine performance in the DI diesel engine using EGR. In case of the burning spray in RCM, special emphasis is given to the autoignition process coupled with the fluid mechanics and chemical reaction. Computations are carried out for a wide range of operating condition in terms of temperature, concentration of oxygen and carbon dioxide of the intake gas in the DI diesel engine. Numerical results indicate that the mixing process along the edges of spray jet has a crucial role for autoignition and combustion process. Temperature and concentration of O2 and CO2 of intake gas significantly influence the combustion characteristics and engine performance in the diesel/EGR environment.

  • PDF

Numerical and Experimental Study on Spray Atomization Characteristics of GDI Injector (직접 분사식 가솔린 기관 인젝터의 분무 미립화 특성에 대한 해석 및 실험적 연구)

  • Lee, C.S.;Rhyu, Y.;Kim, H.J.;Park, S.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2002
  • In this study numerical and experimental study on the spray atomization characteristics of a GDI injector is performed. To carry out numerical analysis, four hybrid models that are composed of conical sheet disintegration model, LISA model, DDB model, and RT model are used. The experimental results to evaluate the prediction accuracy of hybrid models are obtained by using phase Doppler particle analyzer and spray visualization system. It is shown that the prediction accuracy of hybrid model concerning spray developing process and spray tip penetration is good for all hybrid models, but the hybrid breakup models show different prediction of accuracy in the case of local radial SMD distribution.

  • PDF

Effect of Internal Swirler Angle and Swirl Chamber Aspect Ratio of Nozzle on Spray Characteristics (노즐 내부 스월러각과 스월실 형상비 변화가 분무특성에 미치는 영향)

  • Kim, Y.J.;Jung, H.C.;Jung, J.W.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • The Objective of this study is to investigate the effect of internal swiller angle and swirl chamber aspect ratio of nozzle on spray characteristics for application of spray system in micro fabrication process. The macro-spray characterictics such as the spray angle and breakup process were obtained by photographs illustrating atomization. The micro-spray characteristics such as droplet size and axial velocity were measured by using PDA with swirler angle and swirl chamber aspect ratio. The swiller angles were $13.5^{\circ},\;27^{\circ},\;and\;40.5^{\circ}$. The swirl chamber aspect ratios were 1.2, 1.6, and 2.0. It was found that the smaller swirl chamber aspect ratio was, the larger axial velocity and drop size were.

  • PDF

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.61-67
    • /
    • 2001
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number k-$\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.

  • PDF

Analysis of Colloid Thrusters for Nano-satellite Propulsion (나노인공위성 추진용 콜로이드 추력기 해석)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.175-178
    • /
    • 2007
  • The mode transition from cone-jet to dripping in colloid thruster operation has been analytically investigated. The transition has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

A Numerical Study of Liquid Injection into the Compressor Cylinder of a Heat Pump (열펌프 압축기의 내부 액분사 효과에 대한 수치해석적 연구)

  • 허재경;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.397-405
    • /
    • 2003
  • Heat and fluid flow in a compressor into which liquid refrigerant is injected for the purpose of reducing discharge gas temperature in a heat pump system has been numerically studied. A mechanistic approach encompassing liquid jet breakup and droplet evaporation has been performed to investigate the effects of liquid injection on the spacial and temporal variation of the gas temperature and pressure inside the compressor cylinder. Various parameters, such as liquid injection mass, time, duration and droplet size, are considered in the present study to elucidate the flow field inside the compressor. As the injection mass is increased, discharge gas temperature is decreased, while the pressure is increased due to the added mass of the injection. For the injected liquid mass corresponding to 15% of the total vapor mass in the cylinder, the discharge gas temperature drops by 22.4 K. It is observed that the droplet size plays a major role in the evaporation rate of the droplets that determines the degree of the discharge temperature drop.

Effect of rotation on the evolution of Population III protostars

  • Lee, Hunchul;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.81.2-81.2
    • /
    • 2014
  • To figure out the effect of rotation on the final mass of Pop III stars, 1D stellar evolution simulations of the evolution of mass-accreting protostars are performed, with zero metalicity and high constant mass accretion rates. The protostar reaches the Keplerian rotation very soon after the onset of mass accretion, but it may continue mass accretion via angular momentum transport induced by viscous stress or magnetic field. However, as the accreting star evolves, the envelope expands rapidly when the total mass reaches $5{\sim}6M_{\odot}$ and the corresponding Eddington factor sharply increases. Strong radiative pressure with rotation imposes different criteria for breakup at the stellar surface, and the so-called 'critical rotation (${\Omega}{\Gamma}$-limit)' is reached. As a result mass accretion rate has to be significantly lowered. This implies that characteristic masses of Pop III stars would be significantly lowered than the previous expectation.

  • PDF

Effect of Internal Geometry of Nozzle on the Velocity and Droplet Size of Twin Spray (노즐이 내부형상이 이중분무의 유속과 입경에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1522-1527
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and swirl chamber aspect ration of nozzle on the characteristics of single and twin spray. The performances of nozzle has been investigated by measurements of spray angle, droplet size, velocity and Weber number at a water pressure 0.4MHz. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the smaller swirler angle, the larger axial velocity became. It was also shown that the larger aspect ratio, the smaller droplet diameter became.

  • PDF