• 제목/요약/키워드: breakup

Search Result 372, Processing Time 0.025 seconds

A Study on Marital satisfaction and Marital Stability by Level of Socio-Economic Status. (사회경제적 지위에 따른 결혼만족도와 결혼안정성에 관한 연구)

  • 최윤실;옥선화
    • Journal of Families and Better Life
    • /
    • v.5 no.2
    • /
    • pp.83-97
    • /
    • 1987
  • The objected of this study were to investigate how social class system influences family life, especially, marital relationship through area of marital satisfaction and marital stability and to find out influences of variables related to marital stability, that is, marital satisfaction, marital alternatives and barriers to marital breakup. The study was performed in a viewpoint of social exchange approach. Major findings were as follows; First, husbands and wive's marital satisfaction and marital stability differed significantly by their level of SES. The marital satisfaction scores and the marital stability score of higher class were higher than those of lower class. second, the higher the marital satisfaction scores and the barriers to marital breakup scores were, the higher the marital stability scores were. And the higher the marital alternatives scores were, the loser the marital stability scores were. Third, the independent influences of variables related to marital stability were differed by level of SES. The last, the typology of marital satisfaction and marital stability differed by level of SES. In lower class, the marriage type of low satisfaction and low stability is more than other types. But in middle and upper class, the most marriage type is high satisfaction and high stability marriage.

  • PDF

Effect of ambient gas density and injection velocity on the atomization characteristics of impinging jet (주위 기체밀도와 분사속도에 따른 충돌제트의 미립화 특성)

  • Lim, Byoung-Jik;Jung, Ki-Hoon;Khil, Tae-Ock;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.104-109
    • /
    • 2004
  • On this paper study is concentrated on the breakup and atomization characteristics of spray formed by impinging jet injectors(like-doublet) used in liquid rocket engine(LRE). On the process of breakup and atomization, injection velocity and ambient gas pressure are the main parameters, so that these are used as variables that specify the experimental condition. Injection velocity varied from 3m/s to 30m/s and ambient gas pressure changed from 0.1MPa to 4.0MPa with nitrogen gas. As results, measured physical quantities decreased with increasing injection velocity and ambient gas pressure. But the decreasing ratios are different from those of the theory.

Separation of Toluene/n-Heptane Mixture by O/W/O Type Emulsion Liquid Membrane(part 1) (O/W/O형 Emulsion 액체막에 의한 Toluene과 n-Heptane 혼합물의 분리(제1보))

  • Ju, Myung-Jong;Kim, Tae-Young;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.95-103
    • /
    • 1996
  • In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in an batch system, the effect of surfactant on the separation factor and membrane stability was studied over the surfactant concentration ranging form 0.1 to 1.5wt% at the contact time of 5 and 10 minutes. and the settling time of 5 and 10 minutes. The surfactant used was sodium lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5wt% for surfantant. It was found that the percentage of membrane breakup reached its minimum values and the separation factor showed its maximum value at the surfactant concentration of 0.5wt%. which confirmed that efficient separation could be effect when emulsion liquid membrane was stable because of low membrane breakup.

Analysis of Fuel/Coolant Mixing in Steam Explosion (증기 폭발시 용융 핵연료/냉각수 혼합에 대한 해석)

  • Lee, Tae-Ho;Jo, Seong-Youn;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.215-221
    • /
    • 1993
  • A required initial condition for a steam explosion to occur following core meltdown accidents of a nuclear power plant is the formation of a coarse mixture of molten fuel and water. The extent of a premixing is the measure of efficiency of steam explosion that may follow. A simple one-dimensional, transient model and the flooding criteria have been applied to evaluate the fuel/coolant mixing limit. Also, both instant breakup and dynamic breakup models for the mixing process have been separately used here and compared each other. The results indicate that fuel temperature, ambient pressure, mixing diameter, water depth, and pouring diameter are the important parameters affecting the mixing behavior.

  • PDF

The Atomization Mechanism and Spray Characteristics of Drum Type Rotary Atomizer (드럼형 회전연료노즐의 미립화 기구 및 분무특성 연구)

  • Lee, Dong-Hun;Choi, Hyun-Kyung;Choi, Seong-Man;You, Gyung-Won;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The atomization phenomena and spray characteristics of drum type rotary atomizer using centrifugal force from high rotational speed of gas turbine engine shaft were studied through rotary atomizer modeling analysis and experimental method. A test rig for rotary atomization that has range of $5,000{\sim}40,000\;rpm$ was used to make similarity for high speed rotating shaft. Spray visualization methodology and Phase Doppler Anemometry were also used to investigate the atomization mechanism and spray characteristics. We found that the rotating fuel spray has unique breakup process and we have to make breakup point earlier through increasing rotating speed to improve atomization performance.

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.

Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air (아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성)

  • Lee, In-Chul;Byun, Young-Wu;Koo, Ja-Ye
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

Spray Characteristics of Modulated Liquid Jet Injected into a Subsonic Crossflow (주파수 변조 분사가 횡단 유동장의 분무 특성에 미치는 영향)

  • Lee, I.C.;Kim, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2009
  • These experiments are close examination of spray characteristics that are continuous liquid jet and modulated liquid jet. The experiments were conducted using water, over a range of crossflow velocities from $42{\sim}l36\;m/s$, with modulation frequencies of $35.7{\sim}166.2\;Hz$. Between continuous crossflow jet and modulated cross-flow jet of penetration, breakup point, spray angle and macro spray shape are experimentally investigated with image analysis. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than modulation effect. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of modulation frequency, SMD inclination of the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various modulation frequency was same distribution. And volume flux was decreased when the modulation frequency increase.

  • PDF

A Study on the Nonlinear Motion of a Vertical Liquid Jet (수직하방 분사된 주의 비선형 거동에 관한 연구)

  • Seok, Ji-Gwon;Jeong, Hwan-Mun;Mun, Su-Yeon;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • The breakup phenomena of a vertical laminar jet issuing from capillary tubes in a quiescent ambient air are investigated using a forced vibration analysis of the surface wave. Using a linear approach to the transient jet velocity, an approximate solution fur the longitudinal motion of a vertical liquid jet is theoretically derived, thus performing an instability analysis by a vibration method. The damping term of this equation is nonlinear as it depends on dimensionless parameters, a Weber number, and an Ohnesorge number. The instability condition is determined based on whether the coefficient of the damping term is less than zero or not. Uniform drop formation is dependent on the vibration frequency fur the forced vibration case.

Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines (루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구)

  • Chae, S.;Ryou, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF