• 제목/요약/키워드: breakthrough adsorption capacity

검색결과 120건 처리시간 0.032초

국내에서 유통되는 활성탄을 이용한 벤젠, 톨루엔, 아세톤 및 노말 헥산의 등온흡착용량 평가 연구 (Research on the Adsorption Capacity for Benzene, Toluene, Acetone and N-hexane of Activated Carbon Acquired fromthe Domestic Market)

  • 이나루;이광용;박두용
    • 한국산업보건학회지
    • /
    • 제24권2호
    • /
    • pp.193-200
    • /
    • 2014
  • Objectives: To develop domestic charcoal tubes with good adsorption capacity, breakthrough experiments were performed on four types of activated charcoal. Materials: The adsorption capacity and the adsorption rate were determined using a modified Wheeler equation after the breakthrough experiment. For four types of charcoal (J, K, S and SKC Inc. 226-01), 100 mg were used in the breakthrough experiment. The test was done on benzene, toluene, n-hexane, and acetone in a dynamic chamber. Results: K charcoal had the greatest surface area and the highest micropore volume. J charcoal had a similar surface area and micropore volume to SKC charcoal. S charcoal had the lowest surface area and micropore volume. J charcoal had the highest adsorption capacity at 101, 252 and 609 ppm of benzene. The gap in benzene adsorption capacity among the types of charcoal was the least at 609 ppm and the greatest at 101 ppm. J charcoal showed the highest adsorption capacity at 54, 106, 228 and 508 ppm of toluene. J charcoal and SKC charcoal had a similar adsorption capacity for acetone. J charcoal had the highest adsorption capacity for n-hexane. In the experiment featuring 10% breakthrough volume, 10% breakthrough occurred at 18 liters at $2065.9mg/m^3$ for J charcoal and at 20 liters at $1771.2mg/m^3$ for K charcoal. It was difficult to judge adsorption capacity by surface area and micropore volume of charcoal. J charcoal, which was similar to SKC charcoal in surface area and micropore volume, showed good adsorption capacity at common workplace concentrations. Conclusions: The adsorption capacity of J and K charcoal was superior compared with SKC charcoal. J and K charcoal can be considered appropriate for use as sampling media based on this result.

질산으로 개질한 활성탄을 충전한 고정층에서 리튬이온 흡착시의 파과특성 (Breakthrough Characteristics for Lithium Ions Adsorption in Fixed-bed Column Packed with Activated Carbon by Modified with Nitric Acid)

  • 감상규;유해나;이민규
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1143-1149
    • /
    • 2014
  • The adsorption experiments of lithium ions were conducted in the fixed bed column packed with activated carbon modified with nitric acid. Effect of inlet concentration, bed hight and flow rate on the removal of lithium ions was investigated. The experimental results showed that the removal and the adsorption capacity of lithium ions increased with increasing inlet concentration, and decreased with increasing flow rate. When the bed height increased, the removal and the adsorption capacity increased. The breakthrough curves gave a good fit to Bohart-Adams model. Adsorption capacity and breakthrough time calculated from Bohart-Adams model, these results were remarkably consistent with the experimental values. The adsorption capacity was not changed in the case of 3 times repetitive use of adsorbent.

공기 중 유기용제 농도수준이 방독마스크 정화통의 활성탄 흡착용량에 미치는 영향 (Effect of Airborne Organic Vapor Concentration Levels on the Adsorption Capacity of Charcoal in the Cartridges of Air Purifying Respirators)

  • 박두용
    • 한국환경보건학회지
    • /
    • 제37권1호
    • /
    • pp.50-56
    • /
    • 2011
  • The adsorption capacity of charcoal is a function of the airborne concentration of the target chemical. To evaluate the adsorption capacity of charcoal packed in the cartridges of air purifying respirators, breakthrough tests were conducted with carbon tetrachloride for three commercial cartridges (3M models #7251, #6000 and AX) at 25, 50, 100, 250 and 500 ppm. Adsorption capacities were calculated using a mass transfer balance equation derived from the curve fitting to the breakthrough curves obtained experimentally. Carbon micropore volumes were estimated by iteration to fit the Dubinin/Radushkevich (D/R) adsorption isotherm. They were 0.6566, 0.5727 and 0.3087 g/cc for #7251, #6000 and the AX cartridge, respectively. Above 100 ppm (at high challenge concentrations), #7251 and #6000 showed higher adsorption capacities. However, as the challenge concentration decreased, the adsorption capacities of #7251 and #6000 sharply dropped. On the other hand, the adsorption capacity of the AX cartridge showed little change with the decrease of the challenge concentration. Thus, the AX showed a higher adsorption capacity than #7251 and #6000 at the 5-50 ppm level. It is concluded that service-life tests of cartridges and adsorption capacity tests of charcoal should be conducted at challenge concentration levels reflecting actual working environmental conditions. Alternatively, it is recommended to use the D/R adsorption isotherm to extrapolate adsorption capacity at low concentration levels from the high concentration levels at which breakthrough tests are conducted, at a minimum of two different concentration levels.

ACF 흡착관 개발을 위한 파괴특성에 관한 연구 (A study on breakthrough characteristics of activated carbon fiber by development of sorbent tube)

  • 원정일;김기환
    • 환경위생공학
    • /
    • 제20권1호
    • /
    • pp.40-54
    • /
    • 2005
  • This dissertation aims to develop adsorption tubes for measuring organic solvents in the working environment, by comparing and analyzing breakthrough condition and adsorption capacity with ACF. 1. In breakthrough characteristics, the raising velocity of breakthrough curve is increasing according to assault concentration, but $50\%$ breakthrough time is decreasing. As breakthrough curve of calculated data using this agrees with the one of experimental data both of them can be used on determining sampling time of adsorption tubes. It is predicted by theoretical that $10\%$ breakthrough time is increasing in the case of increasing filled adsorbent amount. 2. $10\%$ breakthrough time is regularly decreasing as much as assault concentration is increasing. As a result, we can predict the life of adsorbent within the range of the low concentration, and adsorption amount that ACF can sample during $10\%$ breakthrough time is increasing as much as assault concentration is increasing.

개질 수소 정제용 PSA 공정을 위한 CO 흡착제의 성능 평가 (The Evaluation of CO Adsorbents Used in PSA Process for the Purification of Reformed Hydrogen)

  • 박진남
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.628-635
    • /
    • 2016
  • Natural gas reformed hydrogen is used as a fuel of fuel cell vehicle, PSA process is used for the purification of reformed hydrogen. In this study, the performance of CO adsorbent in PSA process was evaluated. Zeolite adsorbents used in the commercial PSA process is used. The physical and chemical properties of adsorbents were characterized using BET apparatus, XRD, and FE-SEM. The breakthrough apparatus modified from GC was used for the CO breakthrough experiment, the quantitative analysis of CO adsorption capacity was performed using CO breakthrough curve. Zeolite 10X and 13X showed superior CO adsorption capacity than activated alumina. The CO adsorption capacity of zeolite 10X is more than twice of zeolite 13X even the BET surface area is low. It seems that the presence of $Ca^{2+}$ cation in zeolite 10X is beneficial to the adsorption of CO.

유기용제용 시료채취기 개발을 위한 활성탄 성능검정에 관한 연구 (Development of an Sampling Tube for Organic Solvents and Study on the Adsorption Capacity of the Activated Charcoal)

  • 배야성;박두용;임대성;박병무
    • 한국산업보건학회지
    • /
    • 제15권1호
    • /
    • pp.8-18
    • /
    • 2005
  • Adsorption capacity for the charcoal were tasted in this study to verify the performance of them for the use of the sampling media in industrial hygiene field. Two set of experiments were conducted. The first experiment was to test performance of the tested charcoal tube that were assembled in the laboratory with the use of the GR grade charcoal. The other tests were investigate the adsorption capacity of the charcoal tested in this study and charcoals embedded in the commercial charcoal tubes. Known air concentration samples for benzene, toluene, and o-xylene were prepared by the dynamic chamber. 1. At low air concentration levels (0.1${\times}$TLV), there was no significant differences between the tested charcoal tubes and the SKC charcoal tubes. This implies that there is no defect with the adsorption capacity of the charcoal. 2. At high concentration with 60 minutes sampling, the breakthrough were found only in the tested charcoal while no breakthrough were shown in the SKC charcoal. 3. From the breakthrough tests for the charcoal, the micropore volume(Wo) were calculated by the curve fitting with the use of Dubinin/Radushkevich(D/R) adsorption isotherm equation. The calculated values were 0.687cc/g for SKC, 0.504cc/g for Sensidyne, and 0.419cc/g for the tested charcoal(Aldrich). 4. Adsorption capacities were obtained from the isotherm curves shown adsorption capacities at several levels of the challenge concentration. All range of the air concentration concerned in industrial hygiene, the SKC charcoal showed approximately two times of adsorption capacity compared to the tested charcoal.

유증기를 구성하는 주요 10종류 성분의 온도에 따른 흡·탈착특성 비교 (Comparisons of Adsorption-Desorption Characteristics of Major 10 Kinds Components Consisting of Gasoline Vapor)

  • 이송우;나영수;이민규
    • 한국환경과학회지
    • /
    • 제23권9호
    • /
    • pp.1593-1600
    • /
    • 2014
  • Adsorption and desorption characteristics of the representative 10 kinds components consisting of gasoline vapor on activated carbon were investigated at the temperature range of $-30^{\circ}C{\sim}25^{\circ}C$. The breakthrough curves of each vapors obtained by the Thomas model were well described the breakthrough experimental results of this study. The breakthrough times of each vapors were correlated with the molecular weight, density, and vapor pressure. The breakthrough times had greater correlation with boiling point than molecular weight and density. The slope of the breakthrough curve was a proportional relationship with the rate constant (k) of Thomas model expression. The higher the slope of the breakthrough curve, the rate constant was larger. The biggest slope vapor had the smallest adsorption capacity ($q_e$). Adsorption and desorption characteristics of mixed vapor similar to the gasoline vapor were studied at room temperature ($25^{\circ}C$). The mixed vapor consisting of 9 components; group A (pentane, hexene, hexane), group B (benzene, toluene), group C (octane, ethylbenzene, xylene, nonane) was examined. Group A was not nearly adsorbed because of substitution by group C, and the desorption capacity of group A was smaller than group C. The adsorbed substances were confirmed to be Group C.

아민화 아크릴계 이온교환섬유의 폐수 중 Linear Alkylbenzene Sulfonate 흡착에 관한 연구 (Studies on the Adsorption of Linear Alkylbenzene Sulfonate from Waste Water by Fibrous Aminated Acrylic ion-Exchanger)

  • 황택성;박진원;김원종
    • 폴리머
    • /
    • 제26권4호
    • /
    • pp.516-522
    • /
    • 2002
  • 4급 암모늄기를 관능기로 갖는 아민화 아크릴계 이온교환섬유를 이용하여 연속식 흡착공정 중 linear alkylbenzene sulfonate(LAS)의 흡착특성을 확인하였다. 아민화 아크릴계 이온교환섬유의 LAS흡착성능은 온도가 증가함에 따라 증가하였으며 $40^{\circ}C$에서 최적 흡착성능을 나타내었다. 또한 컬럼 베드 충진비(L/D)의 변화에 따른 LAS 이온의 흡착능은 L/D>2에서 최대 흡착능을 나타내었다. pH 변화에 따른 LAS이온 흡착능은 pH가 증가함에 따라 증가하는 경향을 나타내었고, pH 7에서 최대 흡착능을 나타내었다. 유속변화에 따른 LAS 흡착능은 유속이 증가할수록 낮아졌으며 농도가 높을수록 떨어졌다.

H2S 제거를 위한 Zeolite와 DETOX의 흡착 특성 비교 연구 (A Study on the comparison on Adsorption characteristics of Zeolite and DETOX for the removal of H2S)

  • 박대석;임지영;조영근;송승준;김진한
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4675-4681
    • /
    • 2014
  • 본 연구는 흡착제 Zeolite 3A와 DETOX에 대하여 $H_2S$의 유입농도와 흡착온도를 공정변수로 하여 포화시간, 흡착량, 흡착속도 등의 $H_2S$ 흡착 제거특성을 평가하기 위하여 수행되었다. $H_2S$의 유입질량유속이 증가함에 따라 Zeolite 3A의 흡착용량은 증가되었으나 포화시간은 감소되었다. 한편 DETOX의 흡착용량과 포화시간은 $H_2S$의 유입질량유속의 증가에 따라 감소되었다. 흡착온도가 상승함에 따라 Zeolite 3A의 흡착용량과 포화시간은 감소한 반면에, DETOX에 대한 이들 값은 증가하였다. DETOX의 $H_2S$흡착용량은 Zeolite 3A의 2.5~16.4배 정도 높게 나타났다. 이는 흡착에서 활성화에너지장벽을 넘어설 충돌빈도는 흡착온도가 증가함에 따라 증가한 것에 기인한 것으로 해석된다. Zeolite 3A와 DETOX에 대하여 $H_2S$의 흡착속도는 $H_2S$의 유입질량유속과 흡착온도가 증가함에 따라 증가하였다. $H_2S$의 흡착속도는 Zeolite 3A가 DETOX의 4배로 나타났다. DETOX는 Zeolite 3A에 비하여 온도 308~318K에서 포화시간은 더욱 길어지고 흡착용량은 더욱 커진다. 바이오가스 중의 $H_2S$제거에 있어서 DETOX는 Zeolite 3A에 비하여 유리한 것으로 나타났다.

연속흐름 모형실험장치를 이용한 전로슬래그에 의한 인산염 제거 (Phosphate removal by the continuous flow pilot plant with converter slag)

  • 이상호;황정재
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.453-459
    • /
    • 2014
  • The excessive concentration of phosphorus in the river and reservoir is a deteriorating factor for the eutrophication. The converter slag was used to remove the phosphate from the synthetic wastewater. Influencing factors were studied to remove soluble orthophosphate with the different particle sizes through the batch and the column experiments by continuous flow. Freundlich and Langmuir adsorption isotherm constants were obtained from batch experiments with $PS_A$ and $PS_B$. Freundlich isotherm was fitted better than Langmuir isotherm. Regression coefficient of Freundlich isotherm was 0.95 for $PS_A$ and 0.92 for $PS_B$, respectively. The adsorption kinetics from the batch experiment were revealed that bigger size of convert slag, $PS_A$ can be applied for the higher than 3.5 mg/L of phosphate concentration. The pilot plant of continuous flow was applied in order to evaluate the pH variation, breakthrough points and breakthrough adsorption capacity of phosphate. The variation of pH was decreased through the experimental hours. The breakthrough time was 1,432 and 312 hours to 10 mg/L and 50 mg/L for the influent concentration, respectively. The breakthrough adsorption capacity was 3.54 g/kg for 10 mg/L, and 1.72 g/kg for 50 mg/L as influent phosphate concentration.