• Title/Summary/Keyword: breakdown electric field

Search Result 391, Processing Time 0.023 seconds

A study on conduction current and D.C. breakdown characteristics in dielectric liquids (절연유의 도전전류와 직류절연파괴특성에 관한 연구)

  • 서국철
    • 전기의세계
    • /
    • v.30 no.4
    • /
    • pp.231-236
    • /
    • 1981
  • It has been known that D.C. breakdown Voltage is lower than A.C. breakdown Voltage in insulatingoil, but there are still many unvivid points at electric conduction in breakdown or under of high electric field. This study measured the electric current-electric field characteristics (I-E characteristics) and the breakdown Voltage under of D.C. electric field of insulating oil using the system of electrodes that are near the Uniform electric field with a result. I can study, electric conduction in area of high electric field depends upon the Schottky effect. The liquidity of breakdown electric field takes place by the local concentration of electric field. The longer gap is and the more electric current is the more breakdown Voltage decreased. There are not almost the change of electric current-electric field characteristics by materials of electrode.

  • PDF

Electrical Characteristics Analysis According to Electrode Shape and Distance Between Electrodes (전극 형태와 전극 간 거리에 따른 전기적 특성 분석)

  • Tae-Hee Kim;Soon-Hyung Lee;Mi-Yong Hwang;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.408-412
    • /
    • 2023
  • In this paper, in order to analyze high electrical insulation and cooling performance using mineral oil, the liquid insulating oil was changed in electrode shape and distance between electrodes to compare and analyze electrical characteristics according to equal electric field, quasi-equivalent electric field, and unequal electric field. As a result, the breakdown voltages were 36,875 V and 36,875 V in the form of sphere-sphere and plate-plate electrodes with equal electric fields. The breakdown voltage was 31,475 V in the sphere-plate electrode type, which is a quasi-equilibrium field, and the breakdown voltage was 28,592 V, 27,050 V, and 22,750 V in the needle-needle, sphere-needle, and needle-plate electrode types, which are unequal fields. Through this, it is possible to know the difference in breakdown voltage according to the type of electric field. The more equal the field, the higher the breakdown voltage, and the more unequal field, the lower the breakdown voltage. The difference in insulation breakdown voltage could be seen depending on the type of electric field, the insulation breakdown voltage was higher for the more equal electric field, and the insulation breakdown voltage was lower for the more unequal electric field. Also, it was confirmed that the closer the distance between the electrodes, the higher the insulation breakdown voltage, the higher the insulation breakdown current, and the insulation breakdown voltage and the insulation breakdown current were proportional.

Study on the Breakdown of the Transformer Insulating Oil in Nonuniform Electric Field (불평등 전계에서 변압기 절연유 절연파괴 연구)

  • Ha-Young Cho;Soon-Hyung Lee;Mi-Yong Hwang;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.280-285
    • /
    • 2023
  • A breakdown voltage and breakdown electric field of the transformer insulating oil of liquid dielectric were studied in uniform electric field and non-uniform electric field and the transformer insulating oil was observed by the process reached breakdown. Insulation performance evaluation of the liquid dielectric was evaluated at the electrode spacing of 2.5 mm under the conditions of domestic and international standards (KS C IEC 60156), so a comparative review was conducted at the electrode spacing of 2.5 mm. When the electrode spacing is 2.5 mm, the average breakdown voltage is 38.5 kV for sphere-sphere electrodes, 26.6 kV for plate-plate electrodes, 22.9 kV for needle-needle electrodes, and 24.3 kV for sphere-needle electrodes. 23.7 kV for the sphere-plate electrode, and 20.7 kV for the needle-plate electrode. From these results, it can be seen that the average value of the breakdown voltage at the electrode spacing of 2.5 mm, in ascending order, is sphere-sphere, plate-plate, sphere-needle, sphere-plate, needle-needle and needle-plate. It was found that the breakdown voltage of the unequal field was lower than that of the equal field.

The Electrical Characteristics of Varistor. (바리스터의 전기적 특성)

  • Hong, Kyung-Jin;Jang, Dong-Hwan;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.52-56
    • /
    • 2001
  • The Breakdown electric field of ZnO semiconductor devices in voltage-current characteristics was increased by increasing of additive materials. The specimen that has not additive materials was not formed spinel structure. The critical voltage that has not spinel structure was 235[V]. When the additive materials has 0.5 and 2[mol%], the Breakdown electric field was 840 and 758[V] in each additive materials. The Breakdown electric field of varistors as a factor of voltage and current was increased by addition of oxide antimony. The varistors that has oxide antimony was linearly increased in low electric field.

  • PDF

A Study on the Electric Field Analyses and Improvement of Insulation Characteristics on the Ribbed Spaced for GIS (GIS 립 스페이서에 대한 전계해석 및 절연특성 개선에 관한 연구)

  • 류성식;최영찬;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • This paper analyzed the effect of ribs on the breakdown characteristics when a metallic particle attaches on the various spot of GIS spacer, using electric field analysis. Also, it was compared with the experimental result of breakdown voltage characteristics for the spacer with a metallic particle on its various spot and with the shape, the length, and the thickness of the ribs varying. The results of electric field analysis show that the electric field concentration of the rib is more weakened than other parts and therefore it restrains the proceeding of streamer, which occurs at the breakdown. And it is verified through experiments that the breakdown voltage of the spacer with rib is higher than that of the spacer without rib. The breakdown characteristics depend on the shape, the length, and the thickness of the rib as well. Also, it is confirmed by the electric field analysis and the experimental results that the electric breakdown characteristics could be improved by rounding the rib edge.

Effect on Metal Guard Ring in Breakdown Characteristics of SiC Schottky Barrier Diode (금속 가드 링이 SiC 쇼트키 다이오드의 항복전압에 미치는 영향)

  • Kim, Seong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.877-882
    • /
    • 2005
  • In order to fabricate a high breakdown SiC-SBD (Schottky barrier diode), we investigate an effect on metal guard ring (MGR) in breakdown characteristics of the SiC-SBD. The breakdown characteristics of MGR-type SiC-SBD is significantly dependent on both the guard ring metal and the alloying time of guard ring metal. The breakdown characteristics of MGR-type SiC-SBDs are essentially improved as the alloying time of guard ring metal is increased. The SiC-SBD without MGR shows less than 200 V breakdown voltage, while the SiC-SBD with Al MGR shows approximately 700 V breakdown voltage. The improvement in breakdown characteristics is attributed to the field edge termination effect by the MGR, which is similar to an implanted guard ring-type SiC-SBD. There are two breakdown origins in the MGR-type SiC-SBD. One is due to a crystal defects, such as micropipes and stacking faults, in the Epi-layers and the SiC substrate, and occurs at a lower electric field. The other is due to the destruction of guard ring metal, which occurs at a higher electric field. The demolition of guard ring metal is due to the electric field concentration at an edge of Schottky contact metal.

The Effect of Fixed Oxide Charge on Breakdown Voltage of p+/n Junction in the Power Semiconductor Devices (전력용 반도체 소자의 설계 제작에 있어서 Fixed oxide charge가 p+/n 접합의 항복전압에 미치는 영향)

  • Yi, C.W.;Sung, M.Y.;Choi, Y.I.;Kim, C.K.;Suh, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.155-158
    • /
    • 1988
  • The fabrication of devices using plans technology could lend to n serious degradation in the breakdown voltage as a result of high electric field at the edges. An elegant approach to reducing the electric field at the edge is by using field limiting ring. The presence of surface charge has n strong influrence on the depletion layer spreading at the surface region because this charge complements the charge due to the ionized acceptors inside the depletion layer. Surface charge of either polarity can lower the breakdown voltage because it affects the distribution of electric field st the edges. In this paper we discuss the influrences of fixed oxide charge on the breakdown voltage of the p+/n junction with field limiting ring(or without field limiting ring).

  • PDF

Improving The Breakdown Characteristics of AlGaN/GaN HEMT by Optimizing The Gate Field Plate Structure (게이트 필드플레이트 구조 최적화를 통한 AlGaN/GaN HEMT 의 항복전압 특성 향상)

  • Son, Sung-Hun;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.1-5
    • /
    • 2011
  • In this paper, we optimize the gate field plate structure to improve breakdown characteristics of AlGaN/GaN HEMT by two-dimensional device simulator. We have simulated using three parameters such as field-plate length, types of insulator, and insulator thickness and thereby we checked change of the electric field distribution and breakdown voltage characteristics. As optimizing field-plate structure, electric fields concentrated near the gate edge and field-plate edge are effectively dispersed. Therefore, avalanche effect is decresed, so breakdown voltage characteristic is increased. As a result breakdown characteristics of optimized gate field-plate structure are increased by about 300% compared to those of the standard structure.

Electric Field Analysis with Imaginary Streamer Process and Insulation Characteristics on the Ribbed Spacer for GIS (GIS 립 스페이서의 가상스트리머 진전에 따른 전계해석 및 절연특성)

  • Ryu, Sung-Sic;Choi, Young-Chan;Lee, Chang-Ryong;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1649-1651
    • /
    • 2001
  • The effect of ribbed spacers having metallic particle attached to the post-type spacer on dielectric breakdown phenomena has been investigated using electric field analysis for imaginary streamer process and a breakdown experiment. It was described that the electric field analysis and the dielectric breakdown test were performed on the case that the particle was attached to the various position of the ribbed spacer having various shapes. As a result, the breakdown voltage of the spacer with two ribs was highest, and it was varied by the length and the thickness of the rib. Especially, in case of the rib with round edge, the breakdown voltage was higher than that with rectangular edge, which complied with the result through the field analysis.

  • PDF

The Insulation Characteristics by Conducting Particle in GIS (GIS내 금속이물 존재시 절연특성)

  • Cho, Kook-Hee;Kim, Jae-Chul;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.105-108
    • /
    • 2004
  • This paper describes the influence of conducting particle in the coaxial cylindrical electrodes under alternating voltage condition investigated using breakdown electric field and electro magnetics simulation method. Simulated particle-location in GIS chamber were the particle on electrode, the particle on enclosure and free moving particle. As results, it was founded that in case of breakdown electric field of the GIS chamber, breakdown electric field of particle on electrode was the lowest, that of free moving particle was middle and that of particle on enclosure was the highest. And in case of the electric field analysis with particle locations, electric field of particle on electrode was the highest that of lifted particle was middle and that of particle on enclosure was the lowest. This results can offer a practical reference ra the insulation design of domestic GIS.

  • PDF