• Title/Summary/Keyword: bread.

Search Result 1,081, Processing Time 0.028 seconds

Changes in Protein, Rheology and Bread-Making Properties of Wheat during Kernel Maturation (소맥(小麥)의 성숙(成熟)에 따른 단백질(蛋白質), 리올로지 및 제(製)빵특성(特性)의 변화(變化))

  • Chang, Hak-Gil;Byoun, Kwang-Eui
    • Applied Biological Chemistry
    • /
    • v.28 no.4
    • /
    • pp.278-283
    • /
    • 1985
  • These studies were conducted to investigate the changes and relation in protein, rheology and bread-mating properties during hard and soft wheat maturation. Samples were collected from the fields at 25 to 50 days after heading at intervals of 5 days. Protein content, sedimentation value and Pelshenke value of the tested wheat kernel or flour differed significantly between hard and soft wheat, and was relatively constant at 35 to 40 days after heading in each cultivar. In Mixogram water absorption of the flour, soft wheat increased only slightly, while intermediate and hard wheat increased remarkedly with maturation of the kernel. Total Mixogram characteristics increased and reached its maximum level at 35 days after heading. Farinogram pattern and bread loaf volume of the flour was greatly differences at the early stages of development due to cultivar, and was relatively constant at 40 days after heading. Significant positive and negative correlations were obtained among the protein and rheological properties, and tread loaf volume as the kernel matured.

  • PDF

The Effects of Dough with Added Silkpeptide Powder on the Physicochemical Characteristics of Bread during Breadmaking (실크펩티드 첨가가 제빵과정 중 이화적 성분 변화에 미치는 영향)

  • Yoon, Seong-Jun;Kim, Young-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.3
    • /
    • pp.265-275
    • /
    • 2007
  • The aim of this study was to investigate the effects of dough with added silkpeptide powder on the physicochemical characteristics of bread during breadmaking, where the physicochemical properties of the bread dough containing silkpeptide were investigated. The protein content of the silkpeptide was 90.83%. In the amino acid analysis of the silkpeptide flour, glycine content was highest at 18,760.04 mg%. Alanine, serine, and tyrosine were much higher in the silkpeptide flour than in wheat flour. In the amino acid analysis of the wheat flour, glutamic acid was determined to be 4,046.16 mg%, which was the highest content, followed by aspartic acid, glycine, leucine, and tryrosine respectively. The pH of the control dough sample was 5.94 and in the dough with added silkpeptide powder it was 5.94~5.96 after mixing. The pH of the test dough, in which 0.2% lactic acid was added, was lower than the control at 5.88. There was no difference in pH between the control and the other samples after fermentation for 30 minutes. The pH of the control was 5.68 and that of the dough with 1.0% silkpeptide was 5.73 after fermentation for 60 minutes. The sucrose content of both the control sample and the sample with added silkpeptide was 3,080 mg% after mixing, while that of the control sample was 550 mg% and that with silkpeptide was 780 mg% after prooping. Sucrose content tented to decrease greatly as it was consumed during the fermentation process and the dough with added silkpeptide had a slower sucrose consumption speed than the control dough.

Growth and Quality Characteristics in Response to Elevated Temperature during the Growing Season of Korean Bread Wheat

  • Chuloh Cho;Han-Yong Jeong;Yulim Kim;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Ji-Young Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.124-124
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is the major staple foods and is in increasing demand in the world. The elevated temperature due to changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15~25℃, it is necessary to study the physiological characteristic of wheat according to the elevated temperature. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in a temperature gradient tunnel (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions, i.e. TO control (near ambient temperature), T1 control+1℃, T2 control+2℃, T3 control+3℃. The period from sowing to heading stage has accelerated, while the growth properties including culm length, spike length and number of spike, have not changed by elevated temperature. On the contrary, the number of grains per spike and grain yield was reduced under T3 condition compared with that of control condition. In addition, the. The grain filling rate and grain maturity also accelerated by elevated temperature (T3). The elevating temperature has led to increasing protein and gluten contents, whereas causing reduction of total starch contents. These results are consistent with reduced expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during late grain filling period. Taken together, our results suggest that the elevated temperature (T3) leads to reduction in grain yield regulating number of grains/spike, whereas increasing the gluten content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. Our results should be provide a useful physiological information for the heat stress response of wheat.

  • PDF

Development of Composite Flours and Their Products Utilizing Domestic Raw Materials -Part VI. Effect of Additives on the Bread-making Quality with Composite Flours- (국산원료(國産原料)를 활용(活用)한 복합분(複合粉) 및 제품개발(製品開發)에 관한 연구(硏究) -제6보 복합분(複合粉)에 의한 제(製)빵에 있어서 첨가제(添加劑)의 영향(影響)-)

  • Kim, Hyong-Soo;Lee, Hee-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.106-115
    • /
    • 1977
  • In order to study the baking properties of various composite flours, naked barley flour, corn flour, potato flour, and sweet potato flour were added to the hard wheat flour respectively in a ratio of 3 : 7. Using above composite flours, effects of glyceryl monosterate (GMS), sodium stearyl lactylate (SSL), calcium stearyl lactylate (CSL), xanthan gum (XG) and polysaccharide (PS) were also examined in terms of sedimentation test, viscosity by amylograph and baking test. The results are as follows: 1) Sedimentation value decreased in the order of hard wheat flour (58), corn flour (47), potato flour (46), sweet potato flour (33). and barley flour (23). Significant effects of additives were observed for all of flours as well as for the composite flours. The most prominant result of additives was obtained with the composite flour of barley and wheat. Among the additives, mixtures of GMS and SSL at 1% final concentration and that of GMS and SSL at the same concentration increased the sedimentation value considerably. No sedimentation measurement, however, was possible for XG since the compound was precipitated by acid during experiment of sedimentation. 2) Effects of additives on the viscosity were determined by amylograph. The mixtures of GMS 1%+SSL 1% and GMS 1%+CSL 1% increased gelatinization point,maximum viscosity and cooling viscosity. GMS 1%+XG 1% or GMS 1%+PS 1% showed less effects. 3) GMS 1%+CSL 0.5% increased the specific loaf volume of bread produced from the composite flour of naked barley and wheat, and appearance, taste and texture of the product were very similar to those of the standard bread produced from wheat flour. GMS 1%+SSL 0.5%, however, increased the loaf volume of bread produced from the composite flours of corn, potato and sweet potato, and wheat. No effects were obtained with XG and PS, except slight improvement of the texture of bread. 4) No specific loaf volume of bread produced from the composite flour of barley and wheat was increased when 1% of SSL, CSL, XG or PS was used separately.

  • PDF

Quality Characteristics of Nelumbo nucifera G. Tea White Bread with Hemicellulase (헤미셀룰라아제를 첨가한 백련차 식빵의 품질 특성)

  • Kim, Young-Sook;Kim, Mun-Yong;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1294-1300
    • /
    • 2008
  • Nelumbo nucifera G. tea white breads were prepared by the addition of 0.01, 0.02, 0.03, and 0.04% hemicellulase to flour of the basic formulation. The experiments and control were then compared in terms of quality characteristics, including pH, total titratable acidity, fermentation power of dough expansion, specific volume, baking loss, moisture content, color, textural characteristics, external and internal surface appearances, and sensory qualities in order to determine the optimal ratio of hemicellulase in the formulation. There were no significant differences in pH and total titratable acidity of dough among the experiments. Fermentation power of dough expansion were increased as incubation time increased. Baking loss was the highest at the 0.04% addition level, while the lowest at the 0.01% level. As hemicellulase content increased, pH, hardness, and fracturability of bread decreased, while total titratable acidity, specific volume, and resilience increased. Water content and lightness were the highest in the control bread samples, and yellowness was maximal in the 0.01% group. Bread made by the addition of hemicellulase had significantly higher greenness and flavor than the control group. Color, consistency, and springiness of crumb, density and uniformity of crumb pore, softness, chewiness, overall acceptability, lotus leaf flavor, delicious taste, astringency, bitterness, and off-flavor were not significantly different among the samples. The results indicate that adding 0.02$\sim$ 0.03% hemicellulase in N elumbo nucifera G. tea white bread is optimal for quality and provides a product with reasonably high overall acceptability.

Effects of Maltogenic Amylase on Textural Properties of Dough and Quality Characteristics of White Pan Bread (Maltogenic Amylase가 식빵반죽의 물성과 식빵의 품질 특성에 미치는 영향)

  • Yoon, Seongjun;Cho, Namji;Lee, Soo-Jeong;Moon, Sung-Won;Jeong, Yoonhwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.752-760
    • /
    • 2015
  • Effects of maltogenic amylase on textural properties of dough and quality characteristics of white pan bread were investigated. White pan bread was prepared with four different levels of maltogenic amylase contents (M-1: 0.048 U/g, M-2: 0.060 U/g, M-3: 0.072 U/g, M-4: 0.084 U/g). The setback by amylograph for the control was $480.0{\pm}12.25$ Brabender Unit (B.U.) while M-4 showed the a setback of $215.0{\pm}5.00B.U.$ The absorption, mixing tolerance index, and stability by farinogram were not significantly different (P>0.05) for across all treatments. The area under the curve (135 min) by extensogram was higher than all samples. The texture profile analysis results showed that there was significant decreasing in hardness for the maltogenic amylase infused bread (P<0.05). M-3 and M-4 showed higher springiness and cohesiveness but lower hardness than control over 1 to 3 days, indicating possibly extended shelf-life. Imaging scan showed that air cell size less than $0.4mm^2$ for the control and M-4 were at rates of 94.90% and 95.70%, respectively. For sensory evaluation, M-3 and M-4 showed higher intensities than the control for taste, flavor, texture, mouthfeel, and moistness quality. These results imply that the quality of white pan bread could be improved by adding maltogenic amylase without the use of chemical additives.

Effects of Hemicellulase on Purple Sweet Potato Bread (헤미셀룰레이즈 첨가가 자색고구마 식빵의 품질에 미치는 영향)

  • Kim, Yeon-Ok;Kim, Mun-Yong;Bing, Dong-Joo;Yoon, Eun-Ju;Lee, Young-Ju;Chun, Soon-Sil
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.1
    • /
    • pp.22-30
    • /
    • 2014
  • In this study, purple sweet potato bread was prepared by the addition of 0.005%, 0.010%, 0.015% and 0.020% hemicellulase. It's effect on product quality and consumer evaluation were examined. The results showed that the dough pH and total titratable acidity were not significantly different between samples. In the fermentation power of dough expansion, a 0.015% addition sample was the highest between the samples. The bread pH decreased significantly as hemicellulase was increased, whereas. Bread total titratable acidity was significantly decreased. The addition of hemicellulase samples were significantly higher in specific volume and baking loss than the control sample. The moisture content was not significantly different between samples. In colors, the lightness of the control sample was the highest, the redness of the 0.020% addition sample was the lowest while the yellowness of the control was the lowest. The hardness and the fracturability decreased significantly as hemicellulase was increased. The resilience indicated reverse effects. In consumer evaluation, the color and softness were not significantly different between samples. And the hemicellulase addition of samples was higher in flavor than that of the control sample. The overall acceptability was the highest at 5.67 with a 0.010% addition sample. According to these results, the addition of 0.010% hemicellulase in purple sweet potato bread would be the optimum level.

Effects of Hemicellulase on White Bread Added with Brown Rice Fiber (헤미셀룰라아제 첨가가 현미 식이섬유 식빵의 품질에 미치는 영향)

  • Yeom, Kyung-Hun;Bing, Dong-Joo;Kim, Mun-Yong;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.352-359
    • /
    • 2016
  • White bread added with brown rice fiber was prepared by addition of 0.005, 0.010, 0.015, and 0.020% hemicellulase. Effects on product quality and sensory evaluation were examined. There were no significant differences in pH of dough before the 1st fermentation among the experiments. Dough made by addition of hemicellulase had a significantly higher pH after the 1st fermentation compared to the control group, whereas pH of bread had reverse effects. Fermentation power of dough expansion increased as incubation time increased. Addition of hemicellulase to samples significantly increased specific volume, baking loss, and water activity compared to the control sample. Moisture content was the lowest upon addition of 0.020% hemicellulase. For color, lightness was the highest in the control bread samples, greenness of the 0.015% addition sample was the lowest and yellowness of the 0.005% addition sample was the highest. For textural characteristics, hardness, gumminess, and chewiness were maximum in the control group. Cohesiveness and springiness were not significantly different between the samples. In the sensory evaluation, color, flavor, bran flavor, bitterness, astringency, and coarseness were not significantly different among the samples. Softness and overall acceptability were highest at the 0.020% addition level but lowest at the 0.010% level. The results indicate that addition of 0.020% hemicellulase to brown rice fiber white bread is optimal for quality and provides products with reasonably high overall acceptability.

Flour Characteristics and End-Use Quality of Korean Wheat Cultivars II. End-use Properties (국산밀 품종의 밀가루 특성과 가공적성 II. 가공 적성평가)

  • Kang, Chon-Sik;Park, Chul Soo;Park, Jong-Chul;Kim, Hag-Sin;Cheong, Young-Keun;Kim, Kyung-Ho;Kim, Ki-Jong;Park, Ki-Hoon;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.75-86
    • /
    • 2010
  • End-use properties of 26 Korean wheat cultivars (KWC) were evaluated to assess consumer satisfaction with 6 imported wheat and 5 commercial wheat flours. In end-use quality testing of cooked noodles, Absorption of noodle dough sheet of ASW (Australian standard white) was similar to Anbaek, Eunpa, Gobun, Hanbaek, Jeokjoong, Jonong, Namhae, and Sukang. Thickness of noodle dough sheet of KWC was showed thin difference. In imported wheat and commercial flour, Commercial flour for baking cookie (Com5) with lower protein flour was lower than those flours. In lightness of prepared noodle dough sheet, Lightness value ($L^*$) of KWC was lower than those of Commercial flour for making white salted noodle (Com1), commercial flour for making for yellow alkaline noodle (Com2), and commercial flour for multi-purpose (Com4). Lightness value ($L^*$) showed significantly negative correlations with particle size of flour, ash, damaged starch, and protein content. Hardness of cooked noodles positively correlated with protein content. In texture of cooked noodles, Hardness of Com1 was similar to that of Alchan, Dahong, Jeokjoon, and Sukang. Also, hardness of Com2 was similar to that of Gobun, Jokyung, Jonong, Keumkang, and Namhae. In end-use quality of bread, bread loaf volume of commercial flour for making bread (Com3) was similar to Alchan, Jokyung, Keumkang, and Namhae but firmness was low. Bread volume showed better relationships with higher SDS-sedimentation volume, longer mixing time of mixograph, higher height of dough during development. Firmness of crumb was negatively correlated with bread volume. Diameter of cookie showed significantly negative correlations with particle size of flour, damaged starch, and protein content. Also, Top gain score became higher as the increase diameter of cookie. In end-use quality testing of cooked cookie, Cookie diameter of Com5 was similar to that of Dahong, Geuru, Olgeuru, Tapdong, and Uri but top grain was low.

Quality Characteristics of Korean Wheat Bread Prepared with Substitutions of Naturally Fermented Rice Starters (쌀 천연 발효액종을 첨가한 우리밀 식빵의 품질특성)

  • Choi, Sang-Ho;Lee, Seung-Joo
    • Culinary science and hospitality research
    • /
    • v.20 no.2
    • /
    • pp.100-119
    • /
    • 2014
  • In this study, rice was used with naturally fermented extract to compare and analyze the physico-chemical characteristics and investigated how to make pan bread made with domestic wheat flour added with naturally fermented rice extract. Also, it examined quality characteristics of pan breads prepared with 0, 10, 30, 50, 70% naturally fermented rice starters. As the fermentation time of rice starters increased, pH of bread doughs decreased. On farinograph, water absorption, development time and stability of rice starters samples were lower than the control. RVA(Rapid Visco Analyzer) analysis showed that wheat flour retrogradation was retarded by increasing rice starters content. The weights of pan breads containing rice starters were higher than that of control. The moisture content of pan breads containing rice starters decreased as storage time increased. In analyzing of visible mold colony during 7 days of storage at $28^{\circ}C$, pan breads containing rice starters was retarded mold growth. In the texture analyzer measurement, hardness of breads containing rice starters significantly increased as storage time increased, which was higher than that of control. The result of sensory properties was no significant difference between the group containing 50% naturally fermented rice starters and control group, such as appearance, flavor, taste and overall quality.