• Title/Summary/Keyword: brannerite

Search Result 2, Processing Time 0.014 seconds

Dispersion and Enrichment of Potentially Toxic Elements in the Chungjoo Area Covered with Black Shales in Korea (충주지역 흑색셰일 분포지역에서의 잠재적 독성원소들의 분산과 부화)

  • Lee, Jin-Soo;Chon, Hyo-Taek;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.495-508
    • /
    • 1996
  • This study had three purposes: (1) to investigate dispersion and enrichment level of potentially toxic elements; (2) to identify uranium-bearing minerals in black shales; and (3) to assess the chemical speciation of heavy metals in soils and sediments. Rock, surface soil and stream sediment samples were collected in the Chungjoo area covered with black shales in Korea. These samples were analyzed for multi-elements using INAA and ICP-AES. The maximum abundance of U in black shales is 56 ppm and radioactivity counts up to 240CPM. Molybdenum, V, Ba, Cu, and Pb are enriched in black shales and most of soils show high concentrations of U, Mo, Ba, Cu, Pb and Zn. Concentrations of potentially toxic elements decrease in the order of mountain soil > farmland soil > paddy soil. Enrichment index of soils and sediments are calculated and higher than 1.0 in the black shale area with the highest value of 6.1. In order to identify U-bearing minerals, electron probe micro analysis was applied, and uraninite and brannerite in black shale were found. Uraninite grains are closely associated with monazite or pyrite with the size of $2{\mu}m$ to $10{\mu}m$ in diameter whereas brannerite occurs as $50{\mu}m$ euhedral grains. With the results of sequential extraction scheme, residual fractions of Cu, Pb and Zn in soils are mainly derived from weathering of black shale but Cu, Pb and Zn in sediments are present as non-residual fractions. Lead is predominantly present as oxidizable phase in soils whereas Zn is in exchageable/water-acid soluble phase in sediments.

  • PDF

Synthesis and Crystal Chemistry of New Actinide Pyrochlores (새로운 파이로클로어의 합성 및 결정화학적 특징)

  • ;;;Sergey V. Yudintsev
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.78-84
    • /
    • 2002
  • New pyrochlore-type phases($A_2$$B_2$$O_{7}$) were synthesized in the systems: CaO-C$eO_2$-T$iO_2$, CaO-$UO_2$(T$hO_2$)-Z$rO_2$, CaO-$UO_2$(T$hO_2$)-$Gd_2$$O_3$-T$iO_2$-Z$rO_2$, 및 CaO-T$hO_2$-S$nO_2$. The starting materials were pressed with the pressure of 200~400 MPa and sintered at 1500~ 155$0^{\circ}C$ for 4~8 hours in air and at 1300~ 135$0^{\circ}C$ for 5 ~50 hours under oxygen atmosphere. The products were characterized using XRD, SEM/EDS and TEM. In the bulk compositions of CaCe$Ti_2$$O_{7}$, CaTh$Zr_2$$O_{7}$,($Ca_{0.5}$ Gd$Th_{0.5}$)(ZrTi)$O_{7}$) ($Ca_{0.5}$Gd$Th_{0.5}$)(ZrTi)$O_{7}$, ($Ca_{0.5}$G$dU_{0.5}$)(ZrTi)$O_{7}$ and CaTh$Sn_2$$O_{7}$ , pyrochlore was the major phase, together with other oxide phase $of_2$$O_{7}$ fluorite structure. In the samples with target compositions CaU$Zr_2$$O_2$$Ca_{0.5}$ G$dU_{0.5}$)$Zr_2$T$iO_{7}$ pyrochlore was not identified, but a fluorite-structured phase was detected. The formation factor as the stable phase depended on crystal chemical characteristics of the actinide and lanthanide elements of the system concerned.