• 제목/요약/키워드: branched maltooligosaccharides

검색결과 5건 처리시간 0.016초

Purification and Characterization of Branching Specificity of a Novel Extracellular Amylolytic Enzyme from Marine Hyperthermophilic Rhodothermus marinus

  • Yoon, Seong-Ae;Ryu, Soo-In;Lee, Soo-Bok;Moon, Tae-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.457-464
    • /
    • 2008
  • An extracellular enzyme (RMEBE) possessing ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferring activity was purified to homogeneity from Rhodothermus marin us by combination of ammonium sulfate precipitation, Q-Sepharose ion-exchange, and Superdex-200 gel filtration chromatographies, and preparative native polyacrylamide gel electrophoresis. The purified enzyme had an optimum pH of 6.0 and was highly thermostable with a maximal activity at $80^{\circ}C$. Its half-life was determined to be 73.7 and 16.7 min at 80 and $85^{\circ}C$, respectively. The enzyme was also halophilic and highly halotolerant up to about 2M NaCl, with a maximal activity at 0.5M. The substrate specificity of RMEBE suggested that it possesses partial characteristics of both glucan branching enzyme and neopullulanase. RMEBE clearly produced branched glucans from amylose, with partial ${\alpha}-(1{\rightarrow}4)$-hydrolysis of amylose and starch. At the same time, it hydrolyzed pullulan partly to panose, and exhibited ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferase activity for small maltooligosaccharides, producing disproportionated ${\alpha}-(1{\rightarrow}6)$-branched maltooligosaccharides. The enzyme preferred maltopentaose and maltohexaose to smaller maltooligosaccharides for production of longer branched products. Thus, the results suggest that RMEBE might be applied for production of branched oligosaccharides from small maltodextrins at high temperature or even at high salinity.

Extracellular Secretion of a Maltogenic Amylase from Lactobacillus gasseri ATCC33323 in Lactococcus lactis MG1363 and its Application on the Production of Branched Maltooligosaccharides

  • Cho, Mee-Hyun;Park, Sang-Eun;Lee, Myung-Hun;Ha, Suk-Jin;Kim, Hae-Yeong;Kim, Myo-Jeong;Lee, Sung-Joon;Madsen, Soren M.;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권9호
    • /
    • pp.1521-1526
    • /
    • 2007
  • A maltogenic amylase gene from Lactobacillus gasseri ATCC33323 (LGMA) was expressed in Lactococcus lactis MG1363 using the P170 expression system. The successful production of recombinant LGMA (rLGMA) was confirmed by the catalytic activity of the enzyme in liquid and solid media. The N-terminal amino acid sequencing analysis of the rLGMA showed that it was Met-Gln-Leu-Ala-Ala-Leu-, which was the same as that of genuine protein, meaning the signal peptide was efficiently cleaved during secretion to the extracellular milieu. The optimal reaction temperature and pH of rLGMA ($55^{\circ}C$ and pH 5, respectively) and enzymatic hydrolysis patterns on various substrates (${\beta}$-cyclodextrin, starch, and pullulan) supported that rLGMA was not only efficiently secreted from the Lactococcus lactis MG1363 but was also functionally active. Finally, the branched maltooligosaccharides were effectively produced from liquefied com starch, by using rLGMA secreted from Lactococcus lactis, with a yield of 53.1%.

전분의 제조와 가공이용에 관한 연구 -제 2 보 세균성 아밀라아제에 의한 전분의 가수분해- (Studies on the Preparation and Utilization of Starch -II. Hydrolysis of Starch by Bacterial Amylases)

  • 이서래
    • Applied Biological Chemistry
    • /
    • 제13권3호
    • /
    • pp.181-186
    • /
    • 1970
  • 1) 세균액화효소(BLA), 세균당화효소 (BSA), isoamylase에 의한 전분의 가수분해 조건을 조사한 다음 이들 효소를 여러가지로 배합하여 물엿을 만들었다. 네가지 물엿 중에서 BLA와 BSA 또는 isoamylase를 같이 사용하여 만든 것은 밀감류 통조림용 시럽으로서 설탕시럽과 비슷한 결과를 나타 내었다. 2) BLA 및 BSA에 의한 전분분해액 중에서 두가지 소당류를 분리하고 그들의 구조를 결정한 바 ${\alpha}-1,6$결합을 하나씩 가지는 5당류 및 6당류임을 확인하였다.

  • PDF

Pullulanase의 Reverse Reaction을 이용한 Maltosyl-$\beta$-Cyclodextrin의 합성 (Synthesis of Maltosyl-$\beta$-Cyclodextrin through the Reverse Reaction of Pullulanase)

  • 한일근;이용현
    • 한국미생물·생명공학회지
    • /
    • 제19권5호
    • /
    • pp.444-449
    • /
    • 1991
  • Pullulanase의 역반응능을 이용하여 maltose와 $\beta$-cyclodextrin으로부터 maltosyl-$\beta$-cyclodextrin을 중합합성하기 위한 최적효소반응조건을 검토하였다. Maltose와 $\beta$-CD를 기질로 maltosyl-$\beta$-CD을 합성하였을 경우, 기질의 농도 70( w/w, 70g/100ml $H2_O$ ), malto-loigo당 /$\beta$-CD의 혼합비 12.7, 그리고 사용효소량 350 units/100ml일 때 최대전융인 43(w/w, g branched-CD/g CD)를 얻었고, 생성량은 2.31g/100ml였다. Maltosyl-$\beta$-CD의 효소합성의 적정 pH 및 온도는 각각 4.9와 $60^{\circ}C$ 였다. 또한 maltose와 $\alpha ,\beta$-그리고 $\gamma$-CD 각각을 기질로하여 maltosyl $\Alpha, \beta$ 그리고 $\gamma$-CD를 합성하였을 경우 전환율은 51.8, 42.6, 그리고 48.1로써, 생성량은 각각 2.8, 2.3 그리고 2.6g/100ml였다.

  • PDF

Enzymatic Preparation of Maltooctaose-rich Mixture from Starch Using a Debranching Enzyme of Nostoc punctiforme

  • Choi, Ji-Hye;Kim, Myo-Jeong;Kim, Young-Wan;Lee, Hee-Seob;Park, Jong-Tae;Lee, Byong-Hoon;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.570-573
    • /
    • 2009
  • The debranching enzyme of Nostoc punctiforme (NPDE) is a novel enzyme that catalyzes the hydrolysis of $\alpha$-1,6-glycosidic linkages in starch, followed by the sequential hydrolysis of $\alpha$-1,4-glycosidic linkages. The debranching activity of NPDE is highly specific for branched chains with a degree of polymerization (DP)>8. Moreover, the rate of hydrolysis of $\alpha$-1,4-linkages by NPDE is greatly enhanced for maltooligosaccharides (MOs) with a DP>8. An analysis of reaction mixtures containing various starches revealed the accumulation of maltooctaose (G8) with glucose and maltose. Based on the novel enzymatic properties of NPDE, an MO mixture containing more than 60% G8 with yield of 18 g G8 for 100 g starch was prepared by the reaction of NPDE with soluble starch, followed by ethanol precipitation and gel permeation chromatography (GPC). The yield of the G8-rich mixture was significantly improved by the addition of isoamylase. In summary, a 4-step process for the production of a G8-rich mixture was developed involving the enzymatic hydrolysis of starch by NPDE.