• Title/Summary/Keyword: branch-bound

Search Result 293, Processing Time 0.027 seconds

Improvment of Branch and Bound Algorithm for the Integer Generalized Nntwork Problem (정수 일반네트워크문제를 위한 분지한계법의 개선)

  • 김기석;김기석
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.1-19
    • /
    • 1994
  • A generalized network problem is a special class of linear programming problem whose coefficient matrix contains at most two nonzero elements per column. A generalized network problem with 0-1 flow restrictions is called an integer generalized network(IGN) problem. In this paper, we presented a branch and bound algorithm for the IGN that uses network relaxation. To improve the procedure, we develop various strategies, each of which employs different node selection criterion and/or branching variable selection criterion. We test these solution strategies and compare their efficiencies with LINDO on 70 randomly generated problems.

  • PDF

A Branch-and-Bound Algorithm for the Optimal Vehicle Routing (최적차량운행을 위한 분지한계기법)

  • Song Seong-Heon;Park Sun-Dal
    • Journal of the military operations research society of Korea
    • /
    • v.9 no.1
    • /
    • pp.75-85
    • /
    • 1983
  • This study is concerned with the problem of routing vehicles stationed at a central depot to supply customers with known demands, in such a way as to minimize the total distance travelled. The problem is referred to as the vehicle routing problem and is a generalization of the multiple traveling salesmen problem that has many practical applications. A branch-and-bound algorithm for the exact solution of the vehicle routing problem is presented. The algorithm finds the optimal number of vehicles as well as the minimum distance routes. A numerical example is given.

  • PDF

Layup Optimization for Composite Laminates with Discrete Ply Angles (이산 섬유 배열각을 이용한 복합재료 적층 평판의 최적 설계)

  • Kim, Tae-Uk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.734-739
    • /
    • 2001
  • In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles is used for optimization of composite laminated plates. To handle discrete ply angles, the branch and bound method is modified. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region, which shows the algorithm can be effectively used for layup optimization of composite laminates..

  • PDF

Branch and Bound Algorithm for the Facility Layout Problem Without Shape Distortion

  • Kim, Chae-Bogk;Kim, Yung-Sik;Lee, Dong-Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.2
    • /
    • pp.59-70
    • /
    • 1996
  • Given the flow matrix, plant size (rectangle shape) and department sizes, the algorithm in this paper provides the plant layout with rectilinear distance measure. To construct automated facility design, eigenvector approach is employed. A branch and bound computer code developed by Tillinghast is modified to find the feasible fits of departments without shape distortion (see [1])in the plant rectangle. The computational results compared with CRAFT are shown.

  • PDF

A Branch and Bound Algorithm for the Transportation Problem under Limited Company Owned Vehicles (제한된 수의 자가차량을 이용한 수송문제의 분지한계법)

  • 진희채;박순달
    • Korean Management Science Review
    • /
    • v.10 no.1
    • /
    • pp.207-216
    • /
    • 1993
  • The purpose of this paper is to develop a branch and bound algorithm for the transportation problem with a limited number of company owned vehicles. First, we find an initial solution by solving quasi-assignment subproblem induced by relaxing constraints of the vehicle capacity and illegal tours elimination equations. Second, we build routing from the assignment, and if there is a routings which violates relaxed constraints, we introduce branches of the subproblem in order to remove it. After all branches are searched, we get the optimal solution.

  • PDF

An On-line Algorithm for Machine Layout Problem (기계 배치 문제의 온라인 알고리즘)

  • Wang, Gi-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.27-36
    • /
    • 1995
  • This paper covers algorithms to determine a machine assignment strategy to locations on a single straight track by minimizing the total backtrack distance. Three different algorithms ar presented: an efficient heuristic procedure, the branch-and-bound algorithm, and the nerual network approach. Simulation results show that the proposed algorithms have potential power to design an on-line optimizer.

  • PDF

A Scheduling Problem to Minimize Total Tardiness in the Two-stage Assembly-type Flowshop (총 납기지연시간 최소화를 위한 두 단계 조립시스템에서의 일정계획에 관한 연구)

  • Ha, Gui-Ryong;Lee, Ik-Sun;Yoon, Sang-Hum
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.3
    • /
    • pp.1-16
    • /
    • 2008
  • This paper considers a scheduling problem to minimize the total tardiness in the two-stage assembly-type flowshop. The system is composed of multiple fabrication machines in the first stage and a final-assembly machine in the second stage. Each job consists of multiple tasks, each task is performed on the fabrication machine specified in advance. After all the tasks of a job are finished, the assembly task can be started on the final-assembly machine. The completion time of a job is the time that the assembly task for the job is completed. The objective of this paper is to find the optimal schedule minimizing the total tardiness of a group of jobs. In the problem analysis, we first derive three solution properties to determine the sequence between two consecutive jobs. Moreover, two lower objective bounds are derived and tested along with the derived properties within a branch-and-bound scheme. Two efficient heuristic algorithms are also developed. The overall performances of the proposed properties, branch-and-bound and heuristic algorithms are evaluated through numerical experiments.

Time Series Pattern Recognition based on Branch and Bound Dynamic Time Warping (분기 한정적인 동적 타임 워핑 기반의 시계열 패턴인식)

  • Jang, Seok-Woo;Park, Young-Jae;Kim, Gye-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.584-589
    • /
    • 2010
  • The dynamic time warping algorithm generally used in time series pattern recognition spends most of the time in generating the correlation table, and it establishes the global path constraint to reduce the corresponding time complexity. However, the constraint restrains just in terms of the time axis, not considering the contents of input patterns. In this paper, we therefore propose an efficient branch and bound dynamic time warping algorithm which sets the global constraints by adaptively reflecting the patterns. The experimental results show that the proposed method outperforms conventional methods in terms of the speed and accuracy.

Design of High-Speed 2-D State-Space Digital Filters Based on a Improved Branch-and-Bound Algorithm (개량된 분기한정법에 의한 고속연산 2차원 상태공간 디지털필터의 설계)

  • Lee Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1188-1195
    • /
    • 2006
  • This paper presents an efficient design method of 2-D state-space digital filter based on an improved branch-and -bound algorithm. The resultant 2-D state-space digital filters whose coefficients are represented as the sum of two power-of-two terms, are attractive for high-speed operation and simple implementation. The feasibility of the proposed method is demonstrated by several experiments. The results show that the approximation error and group delay characteristic of the resultant filters are similar to those of the digital filters which designed in the continuous coefficient space.

Branch-and-Bound Based Heuristic Scheduling for the Single-Hoist and Multiple-Products Production System (단일 호이스트 생산시스템에서 다양한 주문을 처리하기 위한 분지한계 기반의 휴리스틱 일정계획)

  • Lee, Jungkoo;Kim, Jeongbae;Koh, Shiegheun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • This paper deals with the single-hoist and multiple-products scheduling problem. Although a mixed integer linear programming model for the problem was developed earlier, a branch-and-bound based heuristic algorithm is proposed in this paper to solve the big-size problems in real situation. The algorithm is capable of handling problems incorporating different product types, jobs in the process, and tank capacities. Using a small example problem the procedure of the heuristic algorithm is explained. To assess the performance of the heuristic we generate a bigger example problem and compare the results of the algorithm proposed in this paper with the optimal solutions derived from the mathematical model of earlier research. The comparison shows that the heuristic has very good performance and the computation time is sufficiently short to use the algorithm in real situation.