• Title/Summary/Keyword: branch-bound

Search Result 293, Processing Time 0.037 seconds

컴퓨터 시스템 설치를 위한 위치-할본-규모결정 모형

  • Choe, Su-In
    • ETRI Journal
    • /
    • v.5 no.3
    • /
    • pp.3-8
    • /
    • 1983
  • In the area of computer network planning, a location-allocation-size problem is involved. Since multi-facility location-allocation-size problems are very complex in formulating a mathematical model, it is a usual practise to adopt alternative approaches, which give no optimal results, instead of the optimal solution by mathematical approach. In this article, however, an attempt is made to formulate a mathematical model for the decision making problem of computer network design.

  • PDF

Task Assignment Strategies for a Complex Real-time Network System

  • Kim Hong-Ryeol;Oh Jae-Joon;Kim Dae-Won
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.601-614
    • /
    • 2006
  • In this paper, a study on task assignment strategies for a complex real-time network system is presented. Firstly, two task assignment strategies are proposed to improve previous strategies. The proposed strategies assign tasks with meeting end-to-end real-time constraints, and also with optimizing system utilization through period modulation of the tasks. Consequently, the strategies aim at the optimizationto optimize of system performance with while still meeting real-time constraints. The proposed task assignment strategies are devised using the genetic algorithmswith heuristic real-time constraints in the generation of new populations. The strategies are differentiated by the optimization method of the two objectives-meeting end-to-end real-time constraints and optimizing system utilization: the first one has sequential genetic algorithm routines for the objectives, and the second one has one multiple objective genetic algorithm routine to find a Pareto solution. Secondly, the performances of the proposed strategies and a well-known existing task assignment strategy using the BnB(Branch and Bound) optimization are compared with one other through some simulation tests. Through the comparison of the simulation results, the most adequate task assignment strategies are proposed for some as system requirements-: the optimization of system utilization, the maximization of running tasktasks, and the minimization of the number of network node nodesnumber for a network system.

A Study on the Brand-based Warehouse Management in Online Clothing Shops (온라인 쇼핑몰의 브랜드 중심 창고관리 기법에 대한 연구)

  • Song, Yong-Uk;Ahn, Byung-Hyuk
    • Journal of Information Technology Applications and Management
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2011
  • As the sales volume of online shops increases, the job burden in the back-offices of the online shops also increases. Order picking is the most labor-intensive operation among the jobs in a back-office and mid-size pure click online shops are experiencing the time delay and complexity in order picking nowadays while fulfilling their customers' orders. Those warehouses of the mid-size shops are based on manual systems, and as order pickings are repeated, the warehouses get a mess and lots of products in those warehouses are getting missing, which results in severe delay in order picking. To overcome this kind of problem in online clothing shops, we research a methodology to locate warehousing products. When products arrive at a warehouse, they are packed into a box and located on a rack in the warehouse. At this point, the operator should determine the box to be put in and the location on the rack for the box to be put on. This problem could be formulated as an Integer Programming model, but the branch-and bound algorithm to solve the IP model requires enormous computation, and sometimes it is even impossible to get a solution in a proper time. So, we relaxed the problem, developed a set of heuristics as a methodology to get a semi-optimum in an acceptable time, and proved by an experiment that the solutions by our methodology are satisfactory and acceptable by field managers.

A Decomposition Approach for Fixed Channel Assignment Problems in Large-Scale Cellular Networks

  • Jin, Ming-Hui;Wu, Eric Hsiao-Kuang;Horng, Jorng-Tzong
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2003
  • Due to insufficient available bandwidth resources and the continuously growing demand for cellular communication services, the channel assignment problem has become increasingly important. To trace the optimal assignment, several heuristic strategies have been proposed. So far, most of them focus on the small-scale systems containing no more than 25 cells and they use an anachronistic cost model, which does not satisfy the requirements ity. Solving the small-scale channel assignment problems could not be applied into existing large scale cellular networks' practice. This article proposes a decomposition approach to solve the fixed channel assignment problem (FCAP) for large-scale cellular networks through partitioning the whole cellular network into several smaller sub-networks and then designing a sequential branch-and-bound algorithm that is made to solve the FCAP for them sequentially. The key issue of partition is to minimize the dependences of the sub-networks so that the proposed heuristics for solving smaller problems will suffer fewer constraints in searching for better assignments. The proposed algorithms perform well based on experimental results and they were applied to the Taiwan Cellular Cooperation (TCC) in ChungLi city to find better assignments for its network.

Transmission System Expansion Planning by Nodal Delivery Marginal Rate Criterion -II (모선수송전달능력(母線輸送傳達能力) 신뢰도 기준에 의한 송전계통(送電系統)의 광역설계(擴充計劃) -II)

  • Park, Jeong-Je;Shi, Bo;Jeong, Sang-Hun;Choi, Jae-Seok;Mount, Timothy;Thomas, Robert
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.574-575
    • /
    • 2007
  • This paper proposes a method for choosing the best transmission system expansion plan using nodal/bus delivery marginal rate criterion ($BMR_k$) defined newly in this paper. The objective method minimizes a total cost which is an investment budget for constructing new transmission lines subject to the $BMR_k$ which means a nodal deterministic reliability level requirement at specified load point. The proposed method models the transmission system expansion problem as an integer programming problem. It solves for the optimal strategy using a branch and bound method that utilizes a network flow approach and the maximum flow-minimum cut set theorem. Test results on an existing 21-bus system are included in the paper. It demonstrated the suitability of the proposed method for solving the transmission system expansion planning problem in competitive electricity market environment.

  • PDF

Optimal Supply Chain Formation Using Buyer Agent Negotiation in SET Model based Make-To-Order (최적 공급사슬망 구성을 위한 구매자 에이전트 협상방법론 개발)

  • Kim, Hyeon-Su;Jo, Jae-Hyeong;Choe, Hyeong-Rim;Hong, Sun-Gu;Son, Jeong-Ha
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.461-470
    • /
    • 2005
  • A dynamic supply chain that is composed of many different companies with different rent roles and interests allows free joining and secession. Buyers place orders simultaneously and manufacturers should compete each other for the orders. The purpose of our paper is how to find the optimal formation of supply chain ill a global viewpoint while allowing each member company to pursue his local goal The dynamic nature of supply chain formation causes the variation of cost depending on how many orders a manufacturer would accept. We propose a multi-agent based negotiation protocol that efficiently leads to the formation of optimal supply chain without giving up maximization of the individual profit in multi-agent environment of the make-to-order industry. The goal of the negotiation is to form a supply chain to minimize the overall sum of manufacturers' manufacturing cost, and earliness cost and tardiness cost based on SET model. We compare the negotiation protocol with Branch & Bound method. Finally, the validity and performance of buyer's negotiation has been tested experimentally.

  • PDF

On the Loading Plan of Container Ship (컨테이너선의 적재계량에 관한 연구)

  • 강기중;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.4
    • /
    • pp.1-15
    • /
    • 1990
  • With increasing ship's speed turnround and port time becomes a large percentage of total roundtrip time and this causes to accelerate the introduction of the various kind of modern handling equipment, the standardization of cargoes, and the improvement of the ship. However, it is still a drag on efficient operation of ship. Similarly, the turnround time at the container port is very important as a measure for the decision of the efficiency of port. To decrease operating coasts, the minimization of the time need to cargo handling at the ports of call must be achieved. Thus the optimization of the time need to cargo handling at the ports of call must be achieved. Thus the optimized Container Loading Plan is necessary, especially under the rapid speed of container operations. For the container loading plan, in this thesis, we use the hungarian method and the branch and bound method to get the initial disposition of both maximization of ship's GM and minimization of shift number to the obstructive container in a yard area. We apply the dynamic programming algorithm to get the final disposition for minimizing total turnroudn time and finally we analyzed the results to check whether the initial disposition is proper or not.

  • PDF

A Study on a Fuzzy Berth Assignment Programming Problem (퍼지 반박시정계획 문제에 관한 연구)

  • 금종수;이홍걸;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.4
    • /
    • pp.59-70
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. In this paper, we concerned with of fuzzy mathematical programming models for a berth assignment problem to achieved an efficient berth operation in a fuzzy environment. In this paper, we focus on the berth assignment programming with fuzzy parameters which are based on personal opinions or subjective judgement. From the above point of view, assume that a goal and a constraint are given by fuzzy sets, respectively, which are characterized by membership functions. Let a fuzzy decision be defined as the fuzzy set resulting from the intersection of a goal and constraint. This paper deals with fuzziness in all parameters which are expressed by fuzzy numbers. A fuzzy parameter defined by a fuzzy number means a possibility distribution of the parameters. These fuzzy 0-1 integer programming problems are formulated by fuzzy functions whose concept is also called the extension principle. We deal with a berth assignment problem with triangular fuzzy coefficients and propose a branch and bound algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) concept. The berth assignment problem is formulated by min-max and fuzzy 0-1 integer programming. Finally, we gave the numerical solutions of the illustrative examples.

  • PDF

Consideration of Ambiguties on Transmission System Expansion Planning using Fuzzy Set Theory (애매성을 고려한 퍼지이론을 이용한 송전망확충계획에 관한 연구)

  • Tran, T.;Kim, H.;Choi, J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.261-265
    • /
    • 2004
  • This paper proposes a fuzzy dual method for analyzing long-term transmission system expansion planning problem considering ambiguities of the power system using fuzzy lineal programming. Transmission expansion planning problem can be formulated integer programming or linear programming with minimization total cost subject to reliability (load balance). A long-term expansion planning problem of a grid is very complex, which have uncertainties fur budget, reliability criteria and construction time. Too much computation time is asked for actual system. Fuzzy set theory can be used efficiently in order to consider ambiguity of the investment budget (economics) for constructing the new transmission lines and the delivery marginal rate (reliability criteria) of the system in this paper. This paper presents formulation of fuzzy dual method as first step for developing a fuzzy Ford-Fulkerson algorithm in future and demonstrates sample study. In application study, firstly, a case study using fuzzy integer programming with branch and bound method is presented for practical system. Secondly, the other case study with crisp Ford Fulkerson is presented.

  • PDF

A Basic Study on Composite Power System Expansion Planning Considering Probabilistic Reliability Criteria

  • Choi, Jae-Seok;Tinh, TranTrung;Kim, Hyung-Chul;El-Keib, A.;Thomas, R.;Billinton, R.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.297-300
    • /
    • 2004
  • This paper proposes a method for choosing the best composite power system expansion plan considering probabilistic reliability criterion. The proposed method was modeled as the minimization of the investment budget (economics) for constructing new transmission lines subject to not only deterministic(demand constraint) but also probabilistic reliability criterion(LOLE) with considering the uncertainties of the system elements. This is achieved by modeling the power system expansion problem as an integer programming one. The method solves for the optimal strategy using a probabilistic theory based branch and bound method that utilizes a network flow approach and the maximum flow-minimum cut set theorem. Although the proposed method is applied to a simple sample study, the test results demonstrate a fact that the proposed method is suitable for solving the power system expansion planning problem subject to practical uncertainties for future.

  • PDF