• Title/Summary/Keyword: branch-bound

Search Result 293, Processing Time 0.041 seconds

Optimal Design of Centralized Computer Networks - The Terminal Layout Problem and A Dual-based Procedure - (중앙집중식 전산망의 경제적 설계 -단말기 배치문제와 쌍대기반 해법-)

  • 김형욱;노형봉;지원철
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.1
    • /
    • pp.16-26
    • /
    • 1989
  • The terminal layout problem is fundamental in may centralized computer networks, which is generated formulated as the capaciated minimum spanning tree problem (CMSTP). We present an implementation of the dual-based procedure to solve the CMSTP. Dual ascent procedure generates a good feasible solutions to the dual of the linear programming relaxation of CMSTP. A feasible primal solution to CMSTP can then be constructed based on this dual solution. This procedure can be used either as a stand-alone heuristic or, else, it can be incorporated into a branch and bound algorithm. A numerical result is given with quite favorable results.

  • PDF

Rough Cut Tool Path Planning in Fewer-axis CNC Machinig (저축 CNC 환경에서의 황삭가공)

  • 강지훈;서석환;이정재
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 1997
  • This paper presents rough cut tool path planning for the fewer-axis machine consisting of a three-axis CNC machine and a rotary indexing table. In the problem dealt with in this paper, the tool orientation is "intermediately" changed, distinguished from the conventional problem where the tool orientation is assumed to be fixed. The developed rough cut path planning algorithm tries to minimize the number of tool orientation (setup) changes together with tool changes and the machining time for the rough cut by the four procedures: a) decomposition of the machining area based on the possibility of tool interference (via convex hull operation), b) determination of the optimal tool size and orientation (via network graph theory and branch-and bound algorithm), c) generation of tool path for the tool and orientation (based on zig-zag pattern), and d) feedrate adjustment to maintain the cutting force at an operation level (based on average cutting force). The developed algorithms are validated via computer simulations, and can be also used in pure fiveaxis machining environment without modification.

  • PDF

Two-Stage Hybrid Flow Shop Scheduling: Minimizing the Number of Tardy Jobs (2 단계 혼합흐름공정에서의 일정계획문제에 관한 연구)

  • Choi Hyun-Seon;Lee Dong-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1133-1138
    • /
    • 2006
  • This paper considers a hybrid flow shop scheduling problem for the objective of minimizing the number of tardy jobs. The hybrid flow shop consists of two stages in series, each of which has multiple identical parallel machines, and the problem is to determine the allocation and sequence of jobs at each stage. A branch and bound algorithm that gives the optimal solutions is suggested that incorporates the methods to obtain the lower and upper bounds. Dominance properties are also derived to reduce the search space. To show the performance of the algorithm, computational experiments are done on randomly generated problems, and the results are reported.

  • PDF

A Database Design without Storage Constraint Considering Denormalization in Relational Database (관계형 데이터베이스에서 저장용량에 제약이 없는 경우 비 정규화를 고려한 데이터베이스 설계)

  • 장영관;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.251-261
    • /
    • 1996
  • Databases are critical to business information systems and RDBMS is most widely used for the database system. Normalization was designed to control various anomalies(insert, update, and delete anomalies). However normalized database design does not account for the tradeoffs necessary for the performance reason. In this research, we model a database design problem without storage constraint. Given a normalized database design, in this model, we do the denormalization of duplicating columns in order in reduce frequent join processes. In this paper, we consider insert, update, delete, and storage cost, and the anomalies are treated by additional disk I/O cost necessary for each insert, update transaction. We propose a branch and bound method, and show considerable cost reduction.

  • PDF

An Optimal Database Design Considering Denormalization in Relational Database (관계형 데이터베이스에서 비정규화를 고려한 최적 데이터베이스 설계)

  • 장영관;강맹규
    • The Journal of Information Technology and Database
    • /
    • v.3 no.1
    • /
    • pp.3-24
    • /
    • 1996
  • Databases are critical to business information systems, and RDBMS is most widely used for the database system. Normalization has been designed to control various anomalies(insert, update, and delete anomalies). However, normalized database design does not account for the tradeoffs necessary for the performance. In this research, we develop a model for database design by denormalization of duplicating attributes in order to reduce frequent join processes. In this mood, we consider insert, update, delete, and query costs. The anomaly and data inconsistency are removed by additional disk I/O which is necessary for each update and insert transaction. We propose a branch and bound method for this model, and show considerable cost reduction.

  • PDF

A Vehicle Routing Model for Multi-Supply Centers Based on Lp-Distance (일반거리산정방법을 이용한 다-물류센터의 최적 수송경로 계획 모델)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • This study is focussed on an optimal vehicle routing model for multi-supply centers in two-echelon logistic system. The aim of this study is to deliver goods for demand sites with optimal decision. This study investigated an integrated model using step-by-step approach based on relationship that exists between the inventory allocation and vehicle routing with restricted amount of inventory and transportations such as the capability of supply centers, vehicle capacity and transportation parameters. Three sub-models are developed: 1) sector-clustering model, 2) a vehicle-routing model based on clustering and a heuristic algorithm, and 3) a vehicle route scheduling model using TSP-solver based on genetic and branch-and-bound algorithm. Also, we have developed computer programs for each sub-models and user interface with visualization for major inputs and outputs. The application and superior performance of the proposed model are demonstrated by several sample runs for the inventory-allocation and vehicle routing problems.

  • PDF

A Thesis Committee Scheduling (학위논문 심사스케쥴링에 관한 연구)

  • 양광민;신승철
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.2
    • /
    • pp.17-31
    • /
    • 1990
  • This problem analyzed in this paper is to specify a schedule for thesis committee allowing maximum committee members' preference over thesis topics and meeting time-slots while satisfying other related scheduling requirements such as prohibiting simultaneous assignment of a committee member to more than one committee at a time. Two mathematical programming applroaches are presented to solve the thesis committee scheduling problem in a professional graduate school. They include LP-based branch-and-bound approach with network subproblems. Characterization of the problem is analyzed to develop an efficient solution algorithm. Implementation and computational experiments are also performed for real size problems on an IBM PC/AT to show the relative performance of the propsoed approaches along with an ordinary ILP solution approach.

  • PDF

An Efficient Algorithm for the Generalized Multiple Choice Linear Knapsack Problem (일반 다중선택 선형배낭문제에 대한 효율적인 해법)

  • Won, J.Y.;Chung, S.J.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.2
    • /
    • pp.33-44
    • /
    • 1990
  • An efficient algorithm is developed for the linear programming relaxation of generalized multiple choice knaspack problem. The generalized multiple choice knaspack problem is an extension of the multiple choice knaspack problem whose relaxed LP problem has been studied extensively. In the worst case, the computational coimplexity of the proposed algorithm is of order 0(n. $n_{max}$)$^{2}$), where n is the total number of variables and $n_{max}$ denotes the cardinality of the largest multiple choice set. The algorithm can be easily embedded in a branch-and-bound procedure for the generalized multiple choice knapsack problem. A numerical example is presented and computational aspects are discussed.sed.

  • PDF

A study on the Optimal Operation of Distirbution System Using the Modified Block Model Method (수정블럭 모델 법에 의한 배전계통의 최적운용에 관한 연구)

  • 송길영;홍상은;김재영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.231-239
    • /
    • 1987
  • Distribution system is one of large and complicated sytem, consisted of a great number of components. Therefore efficient operation based on precise analysis and computation methods is indispensable accommodating growing loads. This paper describes an optimal operation problem to relieve overload flow in radial distribution systems by using modified block model. The problem is formulated as a network problem of synthesizing the optimal spanning tree in a graph, branch and bound method is used for the optimization. Especially modified block model proposed in this paper is validated more practical than conventional model. These methods can be applied to two types of distribution system problems such as, 1) planning problem to check the capability of relieving overload at normal rating, 2) emergency operation problem to determine switching scheme for minimizing customer loads affected by a fault. Examples of application to these problems are discussed.

  • PDF

Makespan Minimization Problem for A Job - Multiple Machines Using Simulated Annealing (Simulated Annealing을 이용한 한 작업-다중 기계문제에서의 Makespan 최소화)

  • 이동주;황인극;김진호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.137-140
    • /
    • 2004
  • 다중 프로세서 시스템이 개발됨에 따라, 새로운 일정계획문제, 하나의 작업이 하나이상의 기계에 의해 동시에 처리되어야 하는 문제가 대두되었다. 이 연구에서는 선행관계를 가진 이러한 다중 프로세서 일정계획문제에 대해 다루어 보았다. 이 연구의 목적은 makespan을 최소화하는 일정계획을 찾는 것이다. 일반적으로 Branch and Bound 기법을 이용하여 선행관계를 가진 다중 프로세서 일정계획문제의 최적해를 찾았는데, 해의 탐색시간이 너무 오래 걸린다는 단점이 있었다. 본 연구에서는 짧은 시간 내에 최적해와 가까운 근사해를 simulated annealing(SA)방법을 이용하여 구해보았다. SA의 성능을 측정하기 위하여, SA의 CPU 처리시간과 구한 근사해를 40개의 예제문제를 통하여 Kramer의 방법의 CPU 처리시간과 최적해와 비교해 보았다.

  • PDF