• Title/Summary/Keyword: braking control

Search Result 414, Processing Time 0.024 seconds

HUMAN-IN-THE-LOOP EVALUATION OF A VEHICLE STABILITY CONTROLLER USING A VEHICLE SIMULATOR

  • Chung, T.;Kim, J.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) system using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.

Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties (모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어)

  • Hwang Jin-Kwon;Song Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

Brake Force simulation of a High Speed Train Using a Dynamic Model (동적 모델에 의한 고속전철의 제동력 시뮬레이션)

  • Lee, Nam-Jin;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • The brake system of a high speed train has a crucial role for the safety of the train. To develop a safe brake system of the high speed train, it is necessary to understand the braking principle and phenomena of the total brake system and its subsystems. In this paper, we have suggested a mathematical model which includes car dynamics, interactions between cars, adhesive forces, brake blending algorithm, and the dynamics of each brake devices. Also, we have proposed a ready-time compensation algorithm of eddy-current brake system and a brake control logic on electric-pneumatic blending. A simulation study has shown the proposed models and algorithms are effective on the braking of the train.

Electronic Control of Braking Force Distribution for Vehicles Using a Direct Adaptive Fuzzy Controller

  • Kim, Hunmo;Kim, Seungdae;Sung, Yoon-Gyeoung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.66-80
    • /
    • 2001
  • In brake systems, a proportioning valve(P. V), which reduces the brake line pressure on each wheel cylinder for the anti-locking of rear wheels, is closely related to the safety of vehicles. However, it is impossible for current P. V. s to completely control brake line pressure because, mechanically, it is an open loop control system. In this paper we describe an electronic brake force distribution system using a direct adaptive fuzzy controller in order to completely control brake line pressure using a closed loop control system. The objective of the electronic brake force distribution system is to change the cut-in-pressure and the valve slop of the P. V in order to obtain better performance of the brake system than with mechanical systems.

  • PDF

A Study on Brake Gain Adaptive Wheel Slip Control (브레이크 게인 적응 휠 슬립 제어에 관한 연구)

  • Jo, J.S.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2007
  • The brake gain adaptive wheel slip controller for a vehicle is designed in this paper. The brake gain from braking pressure to braking torque defined by friction coefficient, friction area and effective friction radius is estimated by the adaptive law based on the wheel slip dynamics. And the wheel slip controller is designed based on the estimated brake gain. The robustness of the designed controller is analyzed using Lyapunov function and the convergence of brake gain is verified. Proposed wheel slip controller is verified via CarSim simulation with two kinds of desired wheel slip ratio.

  • PDF

A Study on a Fuzzy Controller for the Electronic Braking Force Distribution System (전자식 차량 제동력 배분 시스템을 위한 퍼지제어기의 연구)

  • 김승대;김훈모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.220-229
    • /
    • 2000
  • In the brake systems a proportioning valve which reduces the brake pressure at each wheel cylinder for anti-locking of rear wheels is closely related with the safety of vehicles. But, it is impossible for a present proportioning valve to exactly control brake pressure because mechanically it is an open loop control system. So, in this paper we describe a electronic brake pressure distribution system using a fuzzy controller in order to exactly control brake pressure using a close loop control system. The object of electronic brake pressure distribution system is to change an cut-in pressure and an valve slop of proportioning valve in order to obtain better good performance of brake system than with mechanical system.

  • PDF

A Study on Optimal Design of Automotive Hydraulic Control System for Slip Ratio Control (슬립율 제어를 위한 자동차용 유압 조절시스템의 최적 설계에 관한 연구)

  • 김대원;김진한;최석창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.41-50
    • /
    • 1998
  • In this study, to investigate a characteristics of slip ratio control of H.C.U for ABS, half car model tester were developed and a new H.C.U. was compactly designed comparing to the commercical H.C.U. for ABS. In half car model tester, variable inertia wheel has been used to load the car weights and braking forces according to the road surface conditions which were realized by pneumatic cylinder. And solenoid valves using P.W.M. (Pulse Width Modulation) method were installed in the new H.C.U The slip ratio characteristics of tire had been measured using half car model tester and the results were used in the control simulation for a new H.C.U.

  • PDF

ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre (타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어)

  • Kim, Jungsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

A Study on the Brake Regulation Point to Obey Velocity Limits for Entering Speed Restriction Regions in the Distance to Go System (Distance to Go System에서 속도제한 구간 진입 시 속도준수를 위한 제동제어 시점에 관한연구)

  • Kim, Tae-Kyu;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.426-438
    • /
    • 2015
  • Train speed controlling systems are now changing from wayside systems to onboard signaling systems. Locomotive engineers refer to wayside markers to decide on a braking point when the train speed appears to be lower than the current speed. However, in the onboard signaling systems that have been installed recently, the braking point is not determined by the wayside signal but by an onboard value. In this paper, we studied braking points and methods for deciding on such points by engineers using the onboard systems. An optimized braking point is proposed via simulation of decelerating velocity to control the velocity in the signaling system through a predefined point; Gaussian distributions are used to simulate the actual situation. We estimated and demonstrated how to obtain braking parameters in order to satisfy the interval of permitted error.